Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

X-Currents And Extreme Brightening Events, Abrielle Tio An Mei Wang, Gerard J. Fasel, Audrey Daucher, Makena Swenski, Andrea Black, John Mann, Maame Osei-Tutu Mar 2024

X-Currents And Extreme Brightening Events, Abrielle Tio An Mei Wang, Gerard J. Fasel, Audrey Daucher, Makena Swenski, Andrea Black, John Mann, Maame Osei-Tutu

Seaver College Research And Scholarly Achievement Symposium

The solar-terrestrial interaction is a dynamic process which manifests itself in the ionosphere. Interplanetary (IP) shocks or solar wind dynamic pressure pulses can generate enhanced brightening in dayside aurora. Foreshock transients are capable of inducing pressure changes, larger in magnitude than solar wind pressure pulses, which also contribute to intensifying dayside aurora. These pressure variations can accelerate particles into the ionosphere, generating field- aligned currents that produce magnetic impulse events and enhanced dayside auroral activity with periods of increased brightening. This study presents several dayside auroral brightening events which are not associated with IP shocks or solar wind dynamic pressure …


Machine Learning Prediction Of Photoluminescence In Mos2: Challenges In Data Acquisition And A Solution Via Improved Crystal Synthesis, Ethan Swonger, John Mann, Jared Horstmann, Daniel Yang Mar 2024

Machine Learning Prediction Of Photoluminescence In Mos2: Challenges In Data Acquisition And A Solution Via Improved Crystal Synthesis, Ethan Swonger, John Mann, Jared Horstmann, Daniel Yang

Seaver College Research And Scholarly Achievement Symposium

Transition metal dichalcogenides (TMDCs) like molybdenum disulfide (MoS2) possess unique electronic and optical properties, making them promising materials for nanotechnology. Photoluminescence (PL) is a key indicator of MoS2 crystal quality. This study aimed to develop a machine-learning model capable of predicting the peak PL wavelength of single MoS2 crystals based on micrograph analysis. Our limited ability to consistently synthesize high-quality MoS2 crystals hampered our ability to create a large set of training data. The project focus shifted towards improving MoS2 crystal synthesis to generate improved training data. We implemented a novel approach utilizing low-pressure chemical vapor deposition (LPCVD) combined with …


Stacking 2d Materials, Michael Hernandez, John C. Mann Mar 2017

Stacking 2d Materials, Michael Hernandez, John C. Mann

Seaver College Research And Scholarly Achievement Symposium

Monolayer Transition Metal Dichalcogenides are atomically thin semi-conductors that are considered quasi 2D materials due to their extremely small thickness. It has been observed that atomically thin crystals exhibit different physical properties than their bulk counterparts due to quantum confinement effects. We are attempting discover new physical properties by developing a technique to stack two different monolayer crystals, MoS2 and MoSe2.