Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Two-Magnon Excitations Observed By Neutron Scattering In The Two-Dimensional Spin-5/2 Heisenberg Antiferromagnet Rb2mnf4, T. Huberman, R. Coldea, R. A. Cowley, D. A. Tennant, R. L. Leheny, Rebecca Christianson, C. D. Frost Sep 2011

Two-Magnon Excitations Observed By Neutron Scattering In The Two-Dimensional Spin-5/2 Heisenberg Antiferromagnet Rb2mnf4, T. Huberman, R. Coldea, R. A. Cowley, D. A. Tennant, R. L. Leheny, Rebecca Christianson, C. D. Frost

Rebecca J. Christianson

The low-temperature magnetic excitations of the two-dimensional spin- 52 square-lattice Heisenberg antiferromagnetRb2MnF4 have been probed using pulsed inelastic neutron scattering. In addition to dominant sharppeaks identified with one-magnon excitations, a relatively weak continuum scattering is also observed at higherenergies. This is attributed to neutron scattering by pairs of magnons and the observed intensities are consistentwith predictions of spin wave theory.


Space Weather Community Operations Workshop: Planning For The Next Decade, J. Fulgham, Jennifer Meehan, W. Tobiska Sep 2011

Space Weather Community Operations Workshop: Planning For The Next Decade, J. Fulgham, Jennifer Meehan, W. Tobiska

Jennifer (Jinni) Meehan

No abstract provided.


Analysis Of Electroluminescence Spectra Of Silicon And Gallium Arsenide P-N Junctions In Avalanche Breakdown, M Lahbabi, A Ahaitoufa, M. Fliyou, E. Abarkan, J.-P. Charles, A. Bath, A. Hoffmann, Sherra Kerns, David Kerns, Jr. Jun 2011

Analysis Of Electroluminescence Spectra Of Silicon And Gallium Arsenide P-N Junctions In Avalanche Breakdown, M Lahbabi, A Ahaitoufa, M. Fliyou, E. Abarkan, J.-P. Charles, A. Bath, A. Hoffmann, Sherra Kerns, David Kerns, Jr.

David V. Kerns

We present a generalized study of light emission from reverse biased p–n junctions under avalanche breakdown conditions. A model is developed based on direct and indirect interband processes including self-absorption to describe measured electroluminescence spectra. This model was used to analyze experimental data for silicon (Si) and gallium arsenide p–n junctions and can be extended to several types of semiconductors regardless of their band gaps. This model can be used as a noninvasive technique for the determination of the junction depth. It has also been used to explain the observed changes of the Si p–n junction electroluminescence spectra after fast …