Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Supplementary Code For "Chain Trajectories, Domain Shapes And Terminal Boundaries In Block Copolymers", Benjamin R. Greenvall, Michael S. Dimitriyev, Gregory M. Grason Jan 2023

Supplementary Code For "Chain Trajectories, Domain Shapes And Terminal Boundaries In Block Copolymers", Benjamin R. Greenvall, Michael S. Dimitriyev, Gregory M. Grason

Data and Datasets

Supplementary code used for the publication "Chain trajectories, domain shapes and terminal boundaries in block copolymers" by Benjamin R. Greenvall, Michael S. Dimitriyev, and Gregory M. Grason. Includes code for extracting and analyzing polar order and chain trajectories from self-consistent field calculations of block copolymers.


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Kinetics Of The Crystal-Melt Phase Transformation In Semicrystalline Polymers, Kiran Subramaniam Iyer Jul 2020

Kinetics Of The Crystal-Melt Phase Transformation In Semicrystalline Polymers, Kiran Subramaniam Iyer

Doctoral Dissertations

The assembly of long-chain polymers into an ordered state is a process that has puzzled polymer scientists for several decades. A process that is largely controlled by the strength of intermolecular attractions in small molecular systems, this crystallization in the case of polymers is controlled by a competition between the aforementioned force of attraction between monomers and the formidable conformational entropy of polymer chains. Any factor that affects this conformational entropy, whether that is an equilibrium thermodynamic factor or a kinetic factor, has the ability to control polymer crystallization. In this thesis, we focus on understanding the underlying kinetic processes …


Self-Assembling Networks In Soft Materials, Ishan Prasad Jul 2018

Self-Assembling Networks In Soft Materials, Ishan Prasad

Doctoral Dissertations

This dissertation presents a study on heterogeneous network structure in two distinct classes of soft material systems: disordered assemblies of jammed binary spheres and ordered morphologies of block copolymer melts. The aim is to investigate the combined role of geometry and entropy in structure formation of soft matter assemblies. First, we investigate the influence of particle size asymmetry on structural properties of jammed binary sphere mixtures. We give evidence of two distinct classes of materials separated by a critical size ratio that marks the onset of a sharp transition due to simultaneous jamming of a sub-component of the packing. We …


Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel Nov 2017

Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel

Doctoral Dissertations

A uniform dispersion of reactants is necessary to achieve a complete reaction involving multi-components, especially for the crosslinking of rigid high-performance materials. In these reactions, miscibility is crucial for curing efficiency. This miscibility is typically enhanced by adding a third component, a plasticizer. For the reaction of the highly crystalline crosslinking agent hexamethylenetetramine (HMTA) with a strongly hydrogen-bonded phenol formaldehyde resin, furfural has been traditionally used as the plasticizer. However, the reason for its effectiveness is not clear. In this doctoral thesis work, miscibility and crosslinking efficiency of plasticizers in phenolic curing reactions are studied by thermal analysis and spectroscopic …