Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Statistical, Nonlinear, and Soft Matter Physics

Gettysburg College

Physics and Astronomy Faculty Publications

Articles 1 - 4 of 4

Full-Text Articles in Physics

Time-Frequency Analysis Reveals Pairwise Interactions In Insect Swarms, James G. Puckett, Rui Ni, Nicholas T. Ouellette Jun 2015

Time-Frequency Analysis Reveals Pairwise Interactions In Insect Swarms, James G. Puckett, Rui Ni, Nicholas T. Ouellette

Physics and Astronomy Faculty Publications

The macroscopic emergent behavior of social animal groups is a classic example of dynamical self-organization, and is thought to arise from the local interactions between individuals. Determining these interactions from empirical data sets of real animal groups, however, is challenging. Using multicamera imaging and tracking, we studied the motion of individual flying midges in laboratory mating swarms. By performing a time-frequency analysis of the midge trajectories, we show that the midge behavior can be segmented into two distinct modes: one that is independent and composed of low-frequency maneuvers, and one that consists of higher-frequency nearly harmonic oscillations conducted in synchrony …


Statistical Theory Of Correlations In Random Packings Of Hard Particles, Yuliang Jin, James G. Puckett, Hernán A. Makse May 2014

Statistical Theory Of Correlations In Random Packings Of Hard Particles, Yuliang Jin, James G. Puckett, Hernán A. Makse

Physics and Astronomy Faculty Publications

A random packing of hard particles represents a fundamental model for granular matter. Despite its importance, analytical modeling of random packings remains difficult due to the existence of strong correlations which preclude the development of a simple theory. Here, we take inspiration from liquid theories for the n-particle angular correlation function to develop a formalism of random packings of hard particles from the bottom up. A progressive expansion into a shell of particles converges in the large layer limit under a Kirkwood-like approximation of higher-order correlations. We apply the formalism to hard disks and predict the density of two-dimensional random …


Searching For Effective Forces In Laboratory Insect Swarms, James G. Puckett, Douglas H. Kelley, Nicholas T. Ouellette Apr 2014

Searching For Effective Forces In Laboratory Insect Swarms, James G. Puckett, Douglas H. Kelley, Nicholas T. Ouellette

Physics and Astronomy Faculty Publications

Collective animal behaviour is often modeled by systems of agents that interact via effective social forces, including short-range repulsion and long-range attraction. We search for evidence of such effective forces by studying laboratory swarms of the flying midge Chironomus riparius. Using multi-camera stereoimaging and particle-tracking techniques, we record three-dimensional trajectories for all the individuals in the swarm. Acceleration measurements show a clear short-range repulsion, which we confirm by considering the spatial statistics of the midges, but no conclusive long-range interactions. Measurements of the mean free path of the insects also suggest that individuals are on average very weakly coupled, but …


Equilibrating Temperaturelike Variables In Jammed Granular Subsystems, James G. Puckett, Karen E. Daniels Jan 2013

Equilibrating Temperaturelike Variables In Jammed Granular Subsystems, James G. Puckett, Karen E. Daniels

Physics and Astronomy Faculty Publications

Although jammed granular systems are athermal, several thermodynamiclike descriptions have been proposed which make quantitative predictions about the distribution of volume and stress within a system and provide a corresponding temperaturelike variable. We perform experiments with an apparatus designed to generate a large number of independent, jammed, two-dimensional configurations. Each configuration consists of a single layer of photoelastic disks supported by a gentle layer of air. New configurations are generated by cyclically dilating, mixing, and then recompacting the system through a series of boundary displacements. Within each configuration, a bath of particles surrounds a smaller subsystem of particles with a …