Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Statistical, Nonlinear, and Soft Matter Physics

PDF

Old Dominion University

Series

Flapping flat plates

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Length Effects Of A Built-In Flapping Flat Plate On The Flow Over A Traveling Wavy Foil, Nansheng Liu, Yan Peng, Xiyun Lu Jan 2014

Length Effects Of A Built-In Flapping Flat Plate On The Flow Over A Traveling Wavy Foil, Nansheng Liu, Yan Peng, Xiyun Lu

Mathematics & Statistics Faculty Publications

Flow over the traveling wavy foil with a built-in rigid flapping plate at its trailing edge has been numerically studied using the multi-relaxation-time Lattice Boltzmann method and immersed boundary method. The effect of the plate length on the propulsive performance such as the thrust force, energy consumption, and propeller efficiency has been investigated. Three modes (body force dominated, body and tail force competing and tail force dominated modes) have been identified that are associated with different hydrodynamics and flow structures. It is revealed that there exists a better performance plate length region and, within this region, a high propeller efficiency …


Flow Over A Traveling Wavy Foil With A Passively Flapping Flat Plate, Nansheng Liu, Yan Peng, Youwen Liang, Xiyun Lu Jan 2012

Flow Over A Traveling Wavy Foil With A Passively Flapping Flat Plate, Nansheng Liu, Yan Peng, Youwen Liang, Xiyun Lu

Mathematics & Statistics Faculty Publications

Flow over a traveling wavy foil with a passively flapping flat plate has been investigated using a multiblock lattice Boltzmann equation and the immersed boundary method. The foil undergoes prescribed undulations in the lateral direction and the rigid flat plate has passive motion determined by the fluid structure interaction. This simplified model is used to study the effect of the fish caudal fin and its flexibility on the locomotion of swimming animals. The flexibility of the caudal fin is modeled by a torsion spring acting about the pivot at the conjuncture of the wavy foil and the flat plate. The …