Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

The Optical Luminosity Function Of Gamma-Ray Bursts Deduced From Rotse-Iii Observations, X. H. Cui, X. F. Wu, J. J. Wei, F. Yuan, W. K. Zheng, E. W. Liang, C. W. Akerlof, M. C. B. Ashley, H A. Flewelling, E. Göǧüş, T. Güver, Ü. Kızıloǧlu, T. A. Mckay, S. B. Pandey, E. S. Rykoff, W. Rujopakarn, B. E. Schaefer, J. C. Wheeler, Sarah A. Yost Nov 2014

The Optical Luminosity Function Of Gamma-Ray Bursts Deduced From Rotse-Iii Observations, X. H. Cui, X. F. Wu, J. J. Wei, F. Yuan, W. K. Zheng, E. W. Liang, C. W. Akerlof, M. C. B. Ashley, H A. Flewelling, E. Göǧüş, T. Güver, Ü. Kızıloǧlu, T. A. Mckay, S. B. Pandey, E. S. Rykoff, W. Rujopakarn, B. E. Schaefer, J. C. Wheeler, Sarah A. Yost

Physics Faculty Publications

We present the optical luminosity function (LF) of gamma-ray bursts (GRBs) estimated from a uniform sample of 58 GRBs from observations with the Robotic Optical Transient Search Experiment III (ROTSE-III). Our GRB sample is divided into two sub-samples: detected afterglows (18 GRBs) and those with upper limits (40 GRBs). We derive R-band fluxes for these two sub-samples 100 s after the onset of the burst. The optical LFs at 100 s are fitted by assuming that the co-moving GRB rate traces the star formation rate. While fitting the optical LFs using Monte Carlo simulations, we take into account the …


Maximizing Precision Of Variable Star Photometry With Digital Cameras In Suburban Environments, David Hergesheimer Aug 2014

Maximizing Precision Of Variable Star Photometry With Digital Cameras In Suburban Environments, David Hergesheimer

STAR Program Research Presentations

Photometry is the measure of the brightness of an object. When making such measurements on stars, it is done is units of magnitude, which is on a logarithmic scale with a base of ~2.512. Variable star photometry using a commercially available digital camera is not going to be as accurate and precise as equipment used by astronomers, and because of the logarithmic scale of magnitude used, determining how much of an effect different error reduction strategies have is not straightforward, and is best done experimentally.

My research is conducting photometry on variable stars (changing brightness) with a digital camera, and …


Basic Astronomy Labs, Terry L. Smith, Michael D. Reynolds, Jay S. Huebner Jul 2014

Basic Astronomy Labs, Terry L. Smith, Michael D. Reynolds, Jay S. Huebner

Jay S Huebner

Providing the tools and know-how to apply the principles of astronomy first-hand, these 43 laboratory exercises each contain an introduction that clearly shows budding astronomers why the particular topic of that lab is of interest and relevant to astronomy. About one-third of the exercises are devoted solely to observation, and no mathematics is required beyond simple high school algebra and trigonometry.Organizes exercises into six major topics—sky, optics and spectroscopy, celestial mechanics, solar system, stellar properties, and exploration and other topics—providing clear outlines of what is involved in the exercise, its purpose, and what procedures and apparatus are to be used. …


Constraints Of The Radio-Loud/Radio-Quiet Dichotomy From The Fundamental Plane, David Garofalo, Matthew I. Kim, Damian J. Christian Jun 2014

Constraints Of The Radio-Loud/Radio-Quiet Dichotomy From The Fundamental Plane, David Garofalo, Matthew I. Kim, Damian J. Christian

Faculty and Research Publications

The Fundamental Plane for black hole activity constitutes a tight correlation between jet power, X-ray luminosity, and black hole mass. Under the assumption that a Blandford–Znajek-type mechanism, which relies on black hole spin, contributes non-negligibly to jet production, the sufficiently small scatter in the Fundamental Plane shows that black hole spin differences of |Δa| ∼ 1 are not typical among the active galactic nuclei population. If – as it seems – radio-loud and radio-quiet objects are both faithful to the Fundamental Plane, models of black hole accretion in which the radio-loud/radio-quiet dichotomy is based on a spin dichotomy of a∼1/a∼0, …


Dipole Bound Excited States Of Polycyclic Aromatic Hydrocarbons Containing Nitrogen And Their Relation To The Interstellar Medium, Mallory L. Theis Apr 2014

Dipole Bound Excited States Of Polycyclic Aromatic Hydrocarbons Containing Nitrogen And Their Relation To The Interstellar Medium, Mallory L. Theis

Honors College Theses

Polycyclic aromatic hydrocarbons (PAHs) are the most abundant type of molecule present in the interstellar medium (ISM). It has been hypothesized that nitrogen replacement within a ring is likely for PAHs present in the ISM. Additionally, electrons, protons, and hydrogen atoms are readily added to or removed from PAHs creating a truly diverse set of chemistries in various interstellar regions. The presence of a nitrogen within a PAH (called a PANH herein) that is additionally dehydrogenated leads to a neutral radical with a large dipole moment. It has recently been shown through the use of high-level quantum chemical computations for …


The Physics Of A Space Elevator, Trevor Hamer Apr 2014

The Physics Of A Space Elevator, Trevor Hamer

Thinking Matters Symposium Archive

A space elevator is a hypothetical device consisting of a long cable attached to the surface of the earth that extends upward into space. Its purpose is to provide a tether on which a vehicle could be lifted up into orbit, greatly reducing the cost of space travel. This project explains the physical forces acting on the elevator along with the kinds of materials required to keep such a cable intact. It also examines different design aspects, as well as potential problems facing the construction and usage of the elevator, and whether or not it is something we should expect …


Secular Damping Of Stellar Bars In Spinning Dark Matter Halos, Stacy Long, Isaac Shlosman, Clayton Heller Feb 2014

Secular Damping Of Stellar Bars In Spinning Dark Matter Halos, Stacy Long, Isaac Shlosman, Clayton Heller

Department of Physics and Astronomy Faculty Publications

We demonstrate using numerical simulations of isolated galaxies that growth of stellar bars in spinning dark matter halos is heavily suppressed in the secular phase of evolution. In a representative set of models, we show that for values of the cosmological spin parameter λ ≳ 0.03, bar growth (in strength and size) becomes increasingly quenched. Furthermore, the slowdown of the bar pattern speed weakens considerably with increasing λ until it ceases completely. The terminal structure of the bars is affected as well, including extent and shape of their boxy/peanut bulges. The essence of this effect lies in the modified angular …