Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula Dec 2022

Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula

Dissertations

Wide bandgap (WBG) semiconductors play a crucial role in the current solid-state lighting technology. The AlGaN compound semiconductor is widely used for ultraviolet (UV) light-emitting diodes (LEDs), however, the efficiency of these LEDs is largely in a single-digit percentage range due to several factors. Until recently, AlInN alloy has been relatively unexplored, though it holds potential for light-emitters operating in the visible and UV regions. In this dissertation, the first axial AlInN core-shell nanowire UV LEDs operating in the UV-A and UV-B regions with an internal quantum efficiency (IQE) of 52% are demonstrated. Moreover, the light extraction efficiency of this …


Application Of Silicon Nanohair Textured P-N Junctions In A Photovoltaic Device, Michael Small Dec 2018

Application Of Silicon Nanohair Textured P-N Junctions In A Photovoltaic Device, Michael Small

Electronic Theses and Dissertations

The goal of this project is to design and develop a fabrication process for a silicon photovoltaic device which incorporates a nanohair textured p-n junction. The silicon nanowires are etched into a silicon wafer, comprising an epitaxial p-layer on n-substrate, via metal-assisted chemical etching (MACE). The resulting nanowires contain p-n junctions that lie along the length of the vertical nanowires. This construct has the potential to increase the optical bandwidth of a silicon photovoltaic device by allowing a greater amount of short wavelength light to reach the junction. In addition, the MACE method of nanofabrication has the potential for decreasing …


Nonlinear Coupled Effects In Nanomaterials, Sia Bhowmick Jan 2018

Nonlinear Coupled Effects In Nanomaterials, Sia Bhowmick

Theses and Dissertations (Comprehensive)

Materials at the nanoscale have different chemical, structural, and optoelectrical properties compared to their bulk counterparts. As a result, such materials, called nanomaterials, exhibit observable differences in certain physical phenomena. One such resulting phenomenon called the piezoelectric effect has played a crucial role in miniature self-powering electronic devices called nanogenerators which are fabricated by using nanostructures, such as nanowires, nanorods, and nanofilms. These devices are capable of harvesting electrical energy by inducing mechanical strain on the individual nanostructures. Electrical energy created in this manner does not have environmental limitations. In this thesis, important coupled effects, such as the nonlinear piezoelectric …


Nanowire-Based Light-Emitting Diodes: A New Path Towards High-Speed Visible Light Communication, Mohsen Nami Sep 2017

Nanowire-Based Light-Emitting Diodes: A New Path Towards High-Speed Visible Light Communication, Mohsen Nami

Physics & Astronomy ETDs

Nano-scale optoelectronic devices have gained significant attention in recent years. Among these devices are semiconductor nanowires, whose dimeters range from 100 to 200 nm. Semiconductor nanowires can be utilized in many different applications including light-emitting diodes and laser diodes. Higher surface to volume ratio makes nanowire-based structures potential candidates for the next generation of photodetectors, sensors, and solar cells. Core-shell light-emitting diodes based on selective-area growth of gallium nitride (GaN) nanowires provide a wide range of advantages. Among these advantages are access to non-polar m-plane sidewalls, higher active region area compared to conventional planar structures, and reduction of threading …