Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Semiconductor and Optical Materials

Theses and Dissertations

2009

Articles 1 - 2 of 2

Full-Text Articles in Physics

A Comparative Study Of The Bidirectional Reflectance Distribution Function Of Several Surfaces As A Mid-Wave Infrared Diffuse Reflectance Standard, Bradley Balling Mar 2009

A Comparative Study Of The Bidirectional Reflectance Distribution Function Of Several Surfaces As A Mid-Wave Infrared Diffuse Reflectance Standard, Bradley Balling

Theses and Dissertations

The Bi-Directional Reflectance Distribution Function (BRDF) has a well defined diffuse measurement standard in the ultraviolet, visible, and near infrared (NIR), Spectralon(trade name). It is predictable, stable, repeatable, and has low surface variation because it is a bulk scatterer. In the mid-wave IR (MWIR) and long-wave IR (LWIR), there is not such a well-defined standard. There are well-defined directional hemispherical reflectance (DHR) standards, but the process of integrating BRDF measurements into DHR for the purpose of calibration is problematic, at best. Direct BRDF measurement standards are needed. This study use current calibration techniques to ensure valid measurements and then systematically …


Wave Optics Simulation Of Optically Augmented Retroreflections For Monostatic/Bistatic Detection, John J. Tatar Iii Mar 2009

Wave Optics Simulation Of Optically Augmented Retroreflections For Monostatic/Bistatic Detection, John J. Tatar Iii

Theses and Dissertations

Optical devices interrogated with a laser in the appropriate band can exhibit strong, deterministic reflections of the incident beam. This characteristic could be exploited for optical target detection and identification. The distribution of reflected power is strongly dependent on the geometry of the interrogation scenario, atmospheric conditions, and the cross section of the target optical device. Previous work on laser interrogation systems in this area has focused on analytic models or testing. To the best of my knowledge, I am presenting for the first time an approach to predict reflected power for a variety of interrogation configurations, targets, and propagation …