Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Mechani-Kits Senior Design Project, Jake Utley, Sophie Carson, Vincent Seguin Jun 2020

Mechani-Kits Senior Design Project, Jake Utley, Sophie Carson, Vincent Seguin

Mechanical Engineering

Studies suggest that when designed and executed well, hands-on activities can enhance student understanding of key mechanics concepts. Current products are expensive and typically not designed to meet a variety of learning objectives. Through the Mechanics of Inclusion and Inclusivity in Mechanics grant, the Cal Poly Physics and Engineering Departments are seeking to incorporate new hands-on activities into their courses. Our team has designed three inexpensive ”MechaniKits” to be used in physics, statics and dynamics courses [1]. This Final Design Review outlines our findings, objectives, and final designs for this project. It also explains our manufacturing and design verification plans. …


Toy Blocks And Rotational Physics, Gabriele U. Varieschi, Isabel R. Jully Dec 2016

Toy Blocks And Rotational Physics, Gabriele U. Varieschi, Isabel R. Jully

Gabriele Varieschi

Have you ever observed a child playing with toy blocks? A favorite game is to build towers and then make them topple like falling trees. To the eye of a trained physicist this should immediately look like an example of the physics of “falling chimneys,” when tall structures bend and break in mid-air while falling to the ground. The game played with toy blocks can actually reproduce well what is usually seen in photographs of falling towers, such as the one that appeared on the cover of the September 1976 issue of The Physics Teacher.1 In this paper we describe …


Toy Models For The Falling Chimney, Gabriele U. Varieschi, Kaoru Kamiya Dec 2016

Toy Models For The Falling Chimney, Gabriele U. Varieschi, Kaoru Kamiya

Gabriele Varieschi

In this paper we review the theory of the ‘‘falling chimney,’’ which deals with the breaking in mid-air of tall structures when they fall to the ground. We show that these ruptures can be caused by either shear forces typically developing near the base, or by the bending of the structure which is caused primarily by the internal bending moment. In the latter case the breaking is more likely to occur between one-third and one-half of the height of the chimney. Small scale toy models are used to reproduce the dynamics of the falling chimney. By examining photos taken during …


Toy Blocks And Rotational Physics, Gabriele U. Varieschi, Isabel R. Jully Sep 2005

Toy Blocks And Rotational Physics, Gabriele U. Varieschi, Isabel R. Jully

Physics Faculty Works

Have you ever observed a child playing with toy blocks? A favorite game is to build towers and then make them topple like falling trees. To the eye of a trained physicist this should immediately look like an example of the physics of “falling chimneys,” when tall structures bend and break in mid-air while falling to the ground. The game played with toy blocks can actually reproduce well what is usually seen in photographs of falling towers, such as the one that appeared on the cover of the September 1976 issue of The Physics Teacher.1 In this paper we describe …


Toy Models For The Falling Chimney, Gabriele U. Varieschi, Kaoru Kamiya Oct 2003

Toy Models For The Falling Chimney, Gabriele U. Varieschi, Kaoru Kamiya

Physics Faculty Works

In this paper we review the theory of the ‘‘falling chimney,’’ which deals with the breaking in mid-air of tall structures when they fall to the ground. We show that these ruptures can be caused by either shear forces typically developing near the base, or by the bending of the structure which is caused primarily by the internal bending moment. In the latter case the breaking is more likely to occur between one-third and one-half of the height of the chimney. Small scale toy models are used to reproduce the dynamics of the falling chimney. By examining photos taken during …