Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physics

A Quantum Approach To Language Modeling, Constantijn Van Der Poel Feb 2023

A Quantum Approach To Language Modeling, Constantijn Van Der Poel

Dissertations, Theses, and Capstone Projects

This dissertation consists of six chapters. . . Chapter 1: We introduce language modeling, outline the software used for this thesis, and discuss related work. Chapter 2: We will unpack the transition from classical to quantum probabilities, as well as motivate their use in building a model to understand language-like datasets. Chapter 3: We motivate the Motzkin dataset, the models we will be investigating, as well as the necessary algorithms to do calculations with them. Chapter 4: We investigate our models’ sensitivity to various hyperparameters. Chapter 5: We compare the performance and robustness of the models. Chapter 6: We conclude …


Quantum Computing And Its Applications In Healthcare, Vu Giang Jan 2023

Quantum Computing And Its Applications In Healthcare, Vu Giang

OUR Journal: ODU Undergraduate Research Journal

This paper serves as a review of the state of quantum computing and its application in healthcare. The various avenues for how quantum computing can be applied to healthcare is discussed here along with the conversation about the limitations of the technology. With more and more efforts put into the development of these computers, its future is promising with the endeavors of furthering healthcare and various other industries.


Machine Learning-Based Jet And Event Classification At The Electron-Ion Collider With Applications To Hadron Structure And Spin Physics, Kyle Lee, James Mulligan, Mateusz Płoskoń, Felix Ringer, Feng Yuan Jan 2023

Machine Learning-Based Jet And Event Classification At The Electron-Ion Collider With Applications To Hadron Structure And Spin Physics, Kyle Lee, James Mulligan, Mateusz Płoskoń, Felix Ringer, Feng Yuan

Physics Faculty Publications

We explore machine learning-based jet and event identification at the future Electron-Ion Collider (EIC). We study the effectiveness of machine learning-based classifiers at relatively low EIC energies, focusing on (i) identifying the flavor of the jet and (ii) identifying the underlying hard process of the event. We propose applications of our machine learning-based jet identification in the key research areas at the future EIC and current Relativistic Heavy Ion Collider program, including enhancing constraints on (transverse momentum dependent) parton distribution functions, improving experimental access to transverse spin asymmetries, studying photon structure, and quantifying the modification of hadrons and jets in …


Advanced Communication And Sensing Protocols Using Twisted Light And Engineered Quantum Statistics, Michelle L. Lollie Apr 2022

Advanced Communication And Sensing Protocols Using Twisted Light And Engineered Quantum Statistics, Michelle L. Lollie

LSU Doctoral Dissertations

Advanced performance of modern technology at a fundamental physical level is driving new innovations in communication, sensing capability, and information processing. Key to this improvement is the ability to harness the power of physical phenomena at the quantum mechanical level, where light and light-matter interactions produce technological advancement not realizable by classical means. Theoretical investigation into quantum computing, sensing capability beyond classical limits, and quantum information has prompted experimental work to bring state-of-the-art quantum systems to the forefront for commercial use. This dissertation contributes to the latter portion of the work. A set of preliminaries is included highlighting pertinent physical …


Quantum State Estimation And Tracking For Superconducting Processors Using Machine Learning, Shiva Lotfallahzadeh Barzili Dec 2021

Quantum State Estimation And Tracking For Superconducting Processors Using Machine Learning, Shiva Lotfallahzadeh Barzili

Computational and Data Sciences (PhD) Dissertations

Quantum technology has been rapidly growing; in particular, the experiments that have been performed with superconducting qubits and circuit QED have allowed us to explore the light-matter interaction at its most fundamental level. The study of coherent dynamics between two-level systems and resonator modes can provide insight into fundamental aspects of quantum physics, such as how the state of a system evolves while being continuously observed. To study such an evolving quantum system, experimenters need to verify the accuracy of state preparation and control since quantum systems are very fragile and sensitive to environmental disturbance. In this thesis, I look …


Modeling Of Argon Bombardment And Densification Of Low Temperature Organic Precursors Using Reactive Md Simulations And Machine Learning, Kwabena Asante-Boahen Aug 2021

Modeling Of Argon Bombardment And Densification Of Low Temperature Organic Precursors Using Reactive Md Simulations And Machine Learning, Kwabena Asante-Boahen

MSU Graduate Theses

In this study, an important aspect of the synthesis process for a-BxC:Hy was systematically modeled by utilizing the Reactive Molecular Dynamics (MD) in modeling the argon bombardment from the orthocarborane molecules as the precursor. The MD simulations are used to assess the dynamics associated with the free radicals that result from the ion bombardment. By applying the Data Mining/Machine Learning analysis into the datasets generated from the large reactive MD simulations, I was able to identify and quality the kinetics of these radicals. Overall, this approach allows for a better understanding of the overall mechanism at the atomistic level of …


At The Interface Of Algebra And Statistics, Tai-Danae Bradley Jun 2020

At The Interface Of Algebra And Statistics, Tai-Danae Bradley

Dissertations, Theses, and Capstone Projects

This thesis takes inspiration from quantum physics to investigate mathematical structure that lies at the interface of algebra and statistics. The starting point is a passage from classical probability theory to quantum probability theory. The quantum version of a probability distribution is a density operator, the quantum version of marginalizing is an operation called the partial trace, and the quantum version of a marginal probability distribution is a reduced density operator. Every joint probability distribution on a finite set can be modeled as a rank one density operator. By applying the partial trace, we obtain reduced density operators whose diagonals …


Sparsity And Weak Supervision In Quantum Machine Learning, Seyran Saeedi Jan 2020

Sparsity And Weak Supervision In Quantum Machine Learning, Seyran Saeedi

Theses and Dissertations

Quantum computing is an interdisciplinary field at the intersection of computer science, mathematics, and physics that studies information processing tasks on a quantum computer. A quantum computer is a device whose operations are governed by the laws of quantum mechanics. As building quantum computers is nearing the era of commercialization and quantum supremacy, it is essential to think of potential applications that we might benefit from. Among many applications of quantum computation, one of the emerging fields is quantum machine learning. We focus on predictive models for binary classification and variants of Support Vector Machines that we expect to be …


Superconducting Radio-Frequency Cavity Fault Classification Using Machine Learning At Jefferson Laboratory, Chris Tennant, Adam Carpenter, Tom Powers, Anna Shabalina Solopova, Lasitha Vidyaratne, Khan Iftekharuddin Jan 2020

Superconducting Radio-Frequency Cavity Fault Classification Using Machine Learning At Jefferson Laboratory, Chris Tennant, Adam Carpenter, Tom Powers, Anna Shabalina Solopova, Lasitha Vidyaratne, Khan Iftekharuddin

Electrical & Computer Engineering Faculty Publications

We report on the development of machine learning models for classifying C100 superconducting radio-frequency (SRF) cavity faults in the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. CEBAF is a continuous-wave recirculating linac utilizing 418 SRF cavities to accelerate electrons up to 12 GeV through five passes. Of these, 96 cavities (12 cryomodules) are designed with a digital low-level rf system configured such that a cavity fault triggers waveform recordings of 17 rf signals for each of the eight cavities in the cryomodule. Subject matter experts are able to analyze the collected time-series data and identify which of the …


Towards Scalable Characterization Of Noisy, Intermediate-Scale Quantum Information Processors, Travis Luke Scholten Dec 2018

Towards Scalable Characterization Of Noisy, Intermediate-Scale Quantum Information Processors, Travis Luke Scholten

Physics & Astronomy ETDs

In recent years, quantum information processors (QIPs) have grown from one or two qubits to tens of qubits. As a result, characterizing QIPs – measuring how well they work, and how they fail – has become much more challenging. The obstacles to characterizing today’s QIPs will grow even more difficult as QIPs grow from tens of qubits to hundreds, and enter what has been called the “noisy, intermediate-scale quantum” (NISQ) era. This thesis develops methods based on advanced statistics and machine learning algorithms to address the difficulties of “quantum character- ization, validation, and verification” (QCVV) of NISQ processors. In the …