Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Plasmon-Enhanced Quadrupolar Transitions With Nanostructured Graphene, Stephen Sanders Nov 2018

Plasmon-Enhanced Quadrupolar Transitions With Nanostructured Graphene, Stephen Sanders

Shared Knowledge Conference

Many important molecules have quadrupolar excitations which occur at much slower rates than the competing dipolar transitions and hence are termed forbidden. In this work, we propose a new approach to enhance quadrupolar transitions using graphene nanostructures. We provide a detailed investigation of the enhanced transition rate in the vicinity of graphene nanoislands and use rigorous computational methods to analyze how this quantity changes with the geometrical and material parameters of the nanoisland. To support these calculations we also provide a semi-analytic approach. Finally, we investigate the performance of arrays of graphene nanoribbons, which constitutes a suitable platform for the …


Sampling Complexity Of Bosonic Random Walkers On A One-Dimensional Lattice, Gopikrishnan Muraleedharan, Akimasa Miyake, Ivan Deutsch Nov 2018

Sampling Complexity Of Bosonic Random Walkers On A One-Dimensional Lattice, Gopikrishnan Muraleedharan, Akimasa Miyake, Ivan Deutsch

Shared Knowledge Conference

Computers based quantum logic are believed to solve problems faster and more efficiently than computers based on classical boolean logic. However, a large-scale universal quantum computer with error correction may not be realized in near future. But we can ask the question: can we devise a specific problem that a quantum device can solve faster than current state of the art super computers? One such problem is the so called "Boson Sampling" problem introduced by Aaronson and Arkhipov. The problem is to generate random numbers according to same distribution as the output number configurations of photons in linear optics. It …


Primordial Black Hole Atoms, David Zwick, Tyler Hanover, Brian Nepper Apr 2018

Primordial Black Hole Atoms, David Zwick, Tyler Hanover, Brian Nepper

STEM Student Research Symposium Posters

Primordial black holes are thought to have been formed at the early stages of the universe in the presence of non-homogeneous density distributions of dark matter. We are working under the assumption that dark matter consists of elementary low mass particles, specifically, spin 1/2 fermions. We further assume that dark matter is electrically neutral, thus its main interaction is gravitational. We investigate dark matter spin 1/2 fermions in orbit around a black hole atom and consider mass ranges for which the quantum description is appropriate. Solutions to the Dirac equation are utilized to describe the radial mass distribution of primordial …