Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Visualizing Atomic Orbitals Using Second Life, Andrew Lang, David C. Kobilnyk Apr 2009

Visualizing Atomic Orbitals Using Second Life, Andrew Lang, David C. Kobilnyk

College of Science and Engineering Faculty Research and Scholarship

We demonstrate the usefulness of Second Life as a platform for enlivening major concepts in chemistry education. These concepts include absorption spectra, selection rules, quantum numbers, and atomic orbital shapes. We have built several exhibits in Second Life which provide 3-dimensional interactivity for each of those areas: an interactive experiment showing the absorption spectrum of hydrogen, an interactive model of selection rules showing allowed and forbidden transitions for each state, a 3-dimensional grid of orbitals showing the constraints on the values of quantum numbers, and a large-scale interactive orbital display allowing the user to choose and rotate to-scale atomic orbitals …


Feynman’S Relativistic Electrodynamics Paradox And The Aharonov-Bohm Effect, Adam Caprez, Herman Batelaan Jan 2009

Feynman’S Relativistic Electrodynamics Paradox And The Aharonov-Bohm Effect, Adam Caprez, Herman Batelaan

Department of Physics and Astronomy: Faculty Publications

An analysis is done of a relativistic paradox posed in the Feynman Lectures of Physics involving two interacting charges. The physical system presented is compared with similar systems that also lead to relativistic paradoxes. The momentum conservation problem for these systems is presented. The relation between the presented analysis and the ongoing debates on momentum conservation in the Aharonov-Bohm problem is discussed.