Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Towards Scalable Characterization Of Noisy, Intermediate-Scale Quantum Information Processors, Travis Luke Scholten Dec 2018

Towards Scalable Characterization Of Noisy, Intermediate-Scale Quantum Information Processors, Travis Luke Scholten

Physics & Astronomy ETDs

In recent years, quantum information processors (QIPs) have grown from one or two qubits to tens of qubits. As a result, characterizing QIPs – measuring how well they work, and how they fail – has become much more challenging. The obstacles to characterizing today’s QIPs will grow even more difficult as QIPs grow from tens of qubits to hundreds, and enter what has been called the “noisy, intermediate-scale quantum” (NISQ) era. This thesis develops methods based on advanced statistics and machine learning algorithms to address the difficulties of “quantum character- ization, validation, and verification” (QCVV) of NISQ processors. In the …


Localization And Scrambling Of Quantum Information With Applications To Quantum Computation And Thermodynamics, Adrian Kristian Chapman Jul 2018

Localization And Scrambling Of Quantum Information With Applications To Quantum Computation And Thermodynamics, Adrian Kristian Chapman

Physics & Astronomy ETDs

As our demand for computational power grows, we encounter the question: "What are the physical limits to computation?" An answer is necessarily incomplete unless it can incorporate physics at the smallest scales, where we expect our near-term high-performance computing to occur. Microscopic physics -- namely, quantum mechanics -- behaves counterintuitively to our everyday experience, however. Quantum matter can occupy superpositions of states and build stronger correlations than are possible classically. This affects how quantum computers and quantum thermodynamic engines will behave.

Though these properties may seem to overwhelmingly defeat our attempts to build a quantum computer at-first-glance, what is remarkable …


Weak Measurements For Quantum Characterization And Control, Jonathan A. Gross Jul 2018

Weak Measurements For Quantum Characterization And Control, Jonathan A. Gross

Physics & Astronomy ETDs

This dissertation concerns itself with the virtues and vices of weak measurements. Weak measurements are all around us, but this does not mean that one should manufacture weakness on all occasions. We critically evaluate two proposals that claim weak measurements provide a novel means of performing quantum state tomography, allegedly increasing tomographic efficacy and yielding foundational insights into the nature of quantum mechanics. We find weak measurements are not an essential ingredient for most of their advertised features. In contrast to this negative finding, we highlight an optimal tomographic scheme for which weak continuous measurements are the best known implementation, …


Dispersive Quantum Interface With Atoms And Nanophotonic Waveguides, Xiaodong Qi May 2018

Dispersive Quantum Interface With Atoms And Nanophotonic Waveguides, Xiaodong Qi

Physics & Astronomy ETDs

Strong coupling between atoms and light is critical for quantum information processing and precise sensing. A nanophotonic waveguide is a promising platform for realizing an atom-light interface that reaches the strong coupling regime. In this dissertation, we study the dispersive response theory of the nanowaveguide system as the means to create an entangling atom-light interface, with applications to quantum non-demolition (QND) measurement and spin squeezing.

We calculate the dyadic Green's function, which determines the scattering of light by atoms in the presence of a nanowaveguide, and thus the phase shift and polarization rotation induced on the guided light. The Green's …


Vibrational Relaxation Theory For Systems Embedded In Microscopically Specified Reservoirs, Anastasia Aemilia Ierides May 2018

Vibrational Relaxation Theory For Systems Embedded In Microscopically Specified Reservoirs, Anastasia Aemilia Ierides

Physics & Astronomy ETDs

This dissertation is a study of the theoretical framework of the practical as well as fundamental problem of the process of relaxation to equilibrium of quantum mechanical systems. The fundamental aspect is concerned with the simultaneous occurrence of decoherence and population equilibration. The practical aspect deals with experimental observations of vibrational relaxation of molecules embedded in liquids or solids. The systems include, but are not limited to, the nondegenerate dimer and harmonic oscillator, in one case weak and in the other strong, interaction with a thermal bath. The time dependence of the energy and the temperature dependence of the relaxation …


Studies Of Light Generation With Four-Wave Mixing In A Cold Atomic Ensemble, Andrew Ferdinand Feb 2018

Studies Of Light Generation With Four-Wave Mixing In A Cold Atomic Ensemble, Andrew Ferdinand

Physics & Astronomy ETDs

Correlated light generated from atomic ensembles can have a central role in prominent quantum information protocols, such as long-distance quantum communication. Here we present our studies on three topics involving the generation of correlated light with four-wave mixing (FWM) in a cold atomic ensemble for applications in quantum communications with high capacity. We experimentally investigate the generation of light with seeded FWM in cold cesium atoms and the time correlations of photon pairs generated with spontaneous FWM. We theoretically investigate the correlations in orbital angular momentum of photon pairs generated with spontaneous FWM for a range of experimental geometries. These …