Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Display Applications For Grating Angle Magnification Accelerated Angular Scanners, Daniel Jesus Valdes Dec 2022

Display Applications For Grating Angle Magnification Accelerated Angular Scanners, Daniel Jesus Valdes

UNLV Theses, Dissertations, Professional Papers, and Capstones

This work includes experimental demonstrations of grating angle magnification accelerated optical beam scanners. Diffraction grating scanners governed by the grating equation can have scan speed advantages over the flat mirror bound by Snell's law of reflection. Scan speed enhancement of 750% was achieved with a 635nm laser and 1800 groove/mm diffraction grating configuration thanks to the grating angle magnification. A three-color diffraction grating scanner shows identical results at larger scan angles. Tunable acceleration speed is a feature enabled by the diffraction grating scanner to operate in a high-speed scanning region and/or high-resolution scanning region depending on the demands of the …


Improved Partial Charge Models In Siliceous Zeolites For The Simulation Of Adsorption And Identification Of Catalytic Sites, Jarod J. Wolffis Aug 2017

Improved Partial Charge Models In Siliceous Zeolites For The Simulation Of Adsorption And Identification Of Catalytic Sites, Jarod J. Wolffis

UNLV Theses, Dissertations, Professional Papers, and Capstones

Utilization of computational modelling and simulation is expanding as computer processing power has increased and as new tools have been developed. This thesis focuses on efforts to improve the accuracy of simulations in aluminosilicate zeolites, an industrially important category of materials for catalysis and separations. For these sorbents, partial atomic charge represents a critical parameter in molecular mechanics simulations, determining the Coulombic non-bonding interaction. Partial charges may also be used as a measure of important physical parameters of the system such as the degree of covalency or the relative acidity of catalytic sites. We compare several common methods for predicting …


A Case For Chiral Contributions To Nondipole Effects In Photoionization Using Linearly Polarized Soft X-Rays, Kyle Patrick Bowen May 2016

A Case For Chiral Contributions To Nondipole Effects In Photoionization Using Linearly Polarized Soft X-Rays, Kyle Patrick Bowen

UNLV Theses, Dissertations, Professional Papers, and Capstones

Modelling angular distributions of photoelectrons requires making accurate approximations of both the incoming light and the behavior of bound electrons. The experimental determination of photoelectron angular distributions is crucial to the development of accurate theoretical models governing the light-matter interaction. To date, many models have relied upon the dipole approximation, which assumes a constant electric field as the source of ionization. Despite knowing that the dipole approximation would break down as photon energy increased, the precise limit was unclear. Over the past two decades, a strong case has been made that corrections to the dipole approximation are necessary for accurately …


A Gauge Theoretic Treatment Of Rovibrational Motion In Diatoms, Gregory Colarch Dec 2012

A Gauge Theoretic Treatment Of Rovibrational Motion In Diatoms, Gregory Colarch

UNLV Theses, Dissertations, Professional Papers, and Capstones

The Born-Oppenheimer approximation has long been the standard approach to solving the Schrödinger equation for diatomic molecules. In it, nuclear and electronic motions are separated into "slow" and "fast" degrees of freedom and couplings between the two are ignored. The neglect of non-adiabatic couplings leads to an incomplete description of diatomic motion, and in a more refined approach, non-adiabatic couplings are uncoupled by transforming the angular momentum of the molecule and electrons into the body-fixed frame.

In this thesis we examine a "modern" form of the Born-Oppenheimer approximation by exploiting a gauge theoretic approach in a description of molecular motion. …


Theoretical And Computational Study Of Time Dependent Scattering On A 2d Surface, Michael Sohn Apr 2010

Theoretical And Computational Study Of Time Dependent Scattering On A 2d Surface, Michael Sohn

UNLV Theses, Dissertations, Professional Papers, and Capstones

The quantum mechanical treatment of the elastic scattring of atoms from a crystal surface provides valuable information, such as surface properties and gas-surface interaction potentials. However, since it is based on the stationary state solution, it does not provide the details of the scattering process in the neighborhood of the surface, especially when atoms are physically adsorbed. In this thesis, the time evolution of the scattering process is treated in 2D with a model potential, V(x, z) = -|g|δ(z) + λδ(z)cos(2πx/a), using the Gaussian wave packet approach. The focus is on the case where the Gaussian wave packet makes a …