Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Conformable Derivative Operator In Modelling Neuronal Dynamics, Mehmet Yavuz, Burcu Yaşkıran Dec 2018

Conformable Derivative Operator In Modelling Neuronal Dynamics, Mehmet Yavuz, Burcu Yaşkıran

Applications and Applied Mathematics: An International Journal (AAM)

This study presents two new numerical techniques for solving time-fractional one-dimensional cable differential equation (FCE) modeling neuronal dynamics. We have introduced new formulations for the approximate-analytical solution of the FCE by using modified homotopy perturbation method defined with conformable operator (MHPMC) and reduced differential transform method defined with conformable operator (RDTMC), which are derived the solutions for linear-nonlinear fractional PDEs. In order to show the efficiencies of these methods, we have compared the numerical and exact solutions of fractional neuronal dynamics problem. Moreover, we have declared that the proposed models are very accurate and illustrative techniques in determining to approximate-analytical …


Effect Of Damping And Thermal Gradient On Vibrations Of Orthotropic Rectangular Plate Of Variable Thickness, U. S. Rana, Robin Robin Jun 2017

Effect Of Damping And Thermal Gradient On Vibrations Of Orthotropic Rectangular Plate Of Variable Thickness, U. S. Rana, Robin Robin

Applications and Applied Mathematics: An International Journal (AAM)

In this present paper, damped vibrations of an orthotropic rectangular plate resting on elastic foundation with thermal gradient is modeled, considering variable thickness of plate. Following Le`vy approach, the governed equation of motion is solved numerically using quintic spline technique with clamped and simply supported edges. The effect of damping parameter and thermal gradient together with taper constant, density parameter and elastic foundation parameter on the natural frequencies of vibration for the first three modes of vibration are depicted through Tables and Figures, and mode shapes have been computed for fixed value of plate parameter. It has been observed that …


A Generalized Polynomial Identity Arising From Quantum Mechanics, Shashikant B. Mulay, John J. Quinn, Mark A. Shattuck Dec 2016

A Generalized Polynomial Identity Arising From Quantum Mechanics, Shashikant B. Mulay, John J. Quinn, Mark A. Shattuck

Applications and Applied Mathematics: An International Journal (AAM)

We establish a general identity that expresses a Pfaffian of a certain matrix as a quotient of homogeneous polynomials. This identity arises in the study of weakly interacting many-body systems and its proof provides another way of realizing the equivalence of two proposed types of trial wave functions used to describe such systems. In the proof of our identity, we make use of only elementary linear algebra and combinatorics and thereby avoid use of more advanced conformal field theory in establishing the aforementioned equivalence.


On The Geometrıc Interpretatıons Of The Kleın-Gordon Equatıon And Solution Of The Equation By Homotopy Perturbation Method, Hasan Bulut, H. M. Başkonuş Dec 2012

On The Geometrıc Interpretatıons Of The Kleın-Gordon Equatıon And Solution Of The Equation By Homotopy Perturbation Method, Hasan Bulut, H. M. Başkonuş

Applications and Applied Mathematics: An International Journal (AAM)

This paper is organized in the following ways: In the first part, we obtained the Klein Gordon Equation (KGE) in the Galilean space. In the second part, we applied Homotopy Perturbation Method (HPM) to this differential equation. In the third part, we gave two examples for the Klein Gordon equation. Finally, We compared the numerical results of this differential equation with their exact results. We also showed that approach used is easy and highly accurate.