Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics

Dartmouth College

Series

Condensed matter

Articles 1 - 18 of 18

Full-Text Articles in Physics

Exact Solution Of Quadratic Fermionic Hamiltonians For Arbitrary Boundary Conditions, Abhijeet Alase, Emilio Cobanera, Gerardo Ortiz, Lorenza Viola Aug 2016

Exact Solution Of Quadratic Fermionic Hamiltonians For Arbitrary Boundary Conditions, Abhijeet Alase, Emilio Cobanera, Gerardo Ortiz, Lorenza Viola

Dartmouth Scholarship

We present a procedure for exactly diagonalizing finite-range quadratic fermionic Hamiltonians with arbitrary boundary conditions in one of D dimensions, and periodic in the remaining D−1. The key is a Hamiltonian-dependent separation of the bulk from the boundary. By combining information from the two, we identify a matrix function that fully characterizes the solutions, and may be used to construct an efficiently computable indicator of bulk-boundary correspondence. As an illustration, we show how our approach correctly describes the zero-energy Majorana modes of a time-reversal-invariant s-wave two-band superconductor in a Josephson ring configuration, and predicts that a fractional 4π-periodic Josephson effect …


Effective Microscopic Models For Sympathetic Cooling Of Atomic Gases, Roberto Onofrio, Bala Sundaram Sep 2015

Effective Microscopic Models For Sympathetic Cooling Of Atomic Gases, Roberto Onofrio, Bala Sundaram

Dartmouth Scholarship

Thermalization of a system in the presence of a heat bath has been the subject of many theoretical investigations especially in the framework of solid-state physics. In this setting, the presence of a large bandwidth for the frequency distribution of the harmonic oscillators schematizing the heat bath is crucial, as emphasized in the Caldeira-Leggett model. By contrast, ultracold gases in atomic traps oscillate at well-defined frequencies and therefore seem to lie outside the Caldeira-Leggett paradigm. We introduce interaction Hamiltonians which allow us to adapt the model to an atomic physics framework. The intrinsic nonlinearity of these models differentiates them from …


Majorana Flat Bands In S -Wave Gapless Topological Superconductors, Shusa Deng, Gerardo Ortiz, Amrit Poudel, Lorenza Viola Apr 2014

Majorana Flat Bands In S -Wave Gapless Topological Superconductors, Shusa Deng, Gerardo Ortiz, Amrit Poudel, Lorenza Viola

Dartmouth Scholarship

We demonstrate how the nontrivial interplay between spin-orbit coupling and nodeless s-wave superconductivity can drive a fully gapped two-band topological insulator into a time-reversal invariant gapless topological superconductor supporting symmetry-protected Majorana flat bands. We characterize topological phase diagrams by a Z2×Z2 partial Berry-phase invariant, and show that, despite the trivial crystal geometry, no unique bulk-boundary correspondence exists. We trace this behavior to the anisotropic quasiparticle bulk gap closing, linear vs quadratic, and argue that this provides a unifying principle for gapless topological superconductivity. Experimental implications for tunneling conductance measurements are addressed, relevant for lead chalcogenide materials.


Multiband S -Wave Topological Superconductors: Role Of Dimensionality And Magnetic Field Response, Shusa Deng, Gerardo Ortiz, Lorenza Viola May 2013

Multiband S -Wave Topological Superconductors: Role Of Dimensionality And Magnetic Field Response, Shusa Deng, Gerardo Ortiz, Lorenza Viola

Dartmouth Scholarship

We further investigate a class of time-reversal-invariant two-band s-wave topological superconductors introduced earlier [Deng, Viola, and Ortiz, Phys. Rev. Lett. 108, 036803 (2012)]. Provided that a sign reversal between the two superconducting pairing gaps is realized, the topological phase diagram can be determined exactly (within mean field) in one and two dimensions as well as in three dimensions upon restricting to the excitation spectrum of time-reversal-invariant momentum modes. We show how, in the presence of time-reversal symmetry, Z2 invariants that distinguish between trivial and nontrivial quantum phases can be constructed by considering only one of the Kramers’ sectors …


Nanomechanical Resonator Coupled Linearly Via Its Momentum To A Quantum Point Contact, Latchezar L. Benatov, Miles P. Blencowe Aug 2012

Nanomechanical Resonator Coupled Linearly Via Its Momentum To A Quantum Point Contact, Latchezar L. Benatov, Miles P. Blencowe

Dartmouth Scholarship

We use a Born-Markov approximated master equation approach to study the symmetrized-in-frequency current noise spectrum and the oscillator steady state of a nanoelectromechanical system where a nanoscale resonator is coupled linearly via its momentum to a quantum point contact (QPC). Our current noise spectra exhibit clear signatures of the quantum correlations between the QPC current and the back-action force on the oscillator at a value of the relative tunneling phase (η=−π/2) where such correlations are expected to be maximized. We also show that the steady state of the oscillator obeys a classical Fokker-Planck equation, but can experience thermomechanical noise squeezing …


Majorana Modes In Time-Reversal Invariant S -Wave Topological Superconductors, Shusa Deng, Lorenza Viola, Gerardo Ortiz Jan 2012

Majorana Modes In Time-Reversal Invariant S -Wave Topological Superconductors, Shusa Deng, Lorenza Viola, Gerardo Ortiz

Dartmouth Scholarship

We present a time-reversal invariant s-wave superconductor supporting Majorana edge modes. The multiband character of the model together with spin-orbit coupling are key to realizing such a topological superconductor. We characterize the topological phase diagram by using a partial Chern number sum, and show that the latter is physically related to the parity of the fermion number of the time-reversal invariant modes. By taking the self-consistency constraint on the s-wave pairing gap into account, we also establish the possibility of a direct topological superconductor-to-topological insulator quantum phase transition.


Experimental Characterization Of Coherent Magnetization Transport In A One-Dimensional Spin System, Chandrasekhar Ramanathan, Paola Cappellaro, Lorenza Viola, David G. Cory Oct 2011

Experimental Characterization Of Coherent Magnetization Transport In A One-Dimensional Spin System, Chandrasekhar Ramanathan, Paola Cappellaro, Lorenza Viola, David G. Cory

Dartmouth Scholarship

We experimentally characterize the non-equilibrium, room-temperature magnetization dynamics of a spin chain evolving under an effective double-quantum (DQ) Hamiltonian. We show that the Liouville space operators corresponding to the magnetization and the two-spin correlations evolve 90 degrees out of phase with each other, and drive the transport dynamics. For a nearest-neighbor-coupled N-spin chain, the dynamics are found to be restricted to a Liouville operator space whose dimension scales only as N2, leading to a slow growth of multi-spin correlations. Even though long-range couplings are present in the real system, we find excellent agreement between the analytical predictions …


Dynamical Critical Scaling And Effective Thermalization In Quantum Quenches: Role Of The Initial State, Shusa Deng, Gerardo Ortiz, Lorenza Viola Mar 2011

Dynamical Critical Scaling And Effective Thermalization In Quantum Quenches: Role Of The Initial State, Shusa Deng, Gerardo Ortiz, Lorenza Viola

Dartmouth Scholarship

We explore the robustness of universal dynamical scaling behavior in a quantum system near criticality with respect to initialization in a large class of states with finite energy. By focusing on a homogeneous XY quantum spin chain in a transverse field, we characterize the nonequilibrium response under adiabatic and sudden quench processes originating from a pure as well as a mixed excited initial state, and involving either a regular quantum critical or a multicritical point. We find that the critical exponents of the ground-state quantum phase transition can be encoded in the dynamical scaling exponents despite the finite energy of …


The Trilinear Hamiltonian: A Zero-Dimensional Model Of Hawking Radiation From A Quantized Source, Paul D. Nation, Miles P. Blencowe Sep 2010

The Trilinear Hamiltonian: A Zero-Dimensional Model Of Hawking Radiation From A Quantized Source, Paul D. Nation, Miles P. Blencowe

Dartmouth Scholarship

We investigate a quantum parametric amplifier with dynamical pump mode, viewed as a zero-dimensional model of Hawking radiation from an evaporating black hole. We derive the conditions under which the spectrum of particles generated from vacuum fluctuations deviates from the thermal spectrum predicted for the conventional parametric amplifier. We find that significant deviations arise when the pump mode (black hole) has emitted nearly half of its initial energy into the signal (Hawking radiation) and idler (in-falling particle) modes. As a model of black hole dynamics, this finding lends support to the view that late-time Hawking radiation contains information about the …


Equilibrium States Of A Test Particle Coupled To Finite-Size Heat Baths, Qun Wei, S. Taylor Smith, Roberto Onofrio Mar 2010

Equilibrium States Of A Test Particle Coupled To Finite-Size Heat Baths, Qun Wei, S. Taylor Smith, Roberto Onofrio

Dartmouth Scholarship

We report on numerical simulations of the dynamics of a test particle coupled to competing Boltzmann heat baths of finite size. After discussing some features of the single bath case, we show that the presence of two heat baths further constrains the conditions necessary for the test particle to thermalize with the heat baths. We find that thermalization is a spectral property in which the oscillators of the bath with frequencies in the range of the test particle characteristic frequency determine its degree of thermalization. We also find an unexpected frequency shift of the test particle response with respect to …


Damping And Decoherence Of A Nanomechanical Resonator Due To A Few Two-Level Systems, Laura G. Remus, Miles P. Blencowe, Yukihiro Tanaka Nov 2009

Damping And Decoherence Of A Nanomechanical Resonator Due To A Few Two-Level Systems, Laura G. Remus, Miles P. Blencowe, Yukihiro Tanaka

Dartmouth Scholarship

We consider a quantum model of a nanomechanical flexing beam resonator interacting with a bath comprising a few damped tunneling two-level systems. In contrast with a resonator interacting bilinearly with an ohmic free oscillator bath (modeling clamping loss, for example), the mechanical resonator damping is amplitude dependent, while the decoherence of quantum superpositions of mechanical position states depends only weakly on their spatial separation.


Dynamical Non-Ergodic Scaling In Continuous Finite-Order Quantum Phase Transitions, S. Deng, G. Ortiz, L. Viola Jan 2009

Dynamical Non-Ergodic Scaling In Continuous Finite-Order Quantum Phase Transitions, S. Deng, G. Ortiz, L. Viola

Dartmouth Scholarship

We investigate the emergence of universal dynamical scaling in quantum critical spin systems adiabatically driven out of equilibrium, with emphasis on quench dynamics which involves non-isolated critical points (i.e., critical regions) and cannot be a priori described through standard scaling arguments nor time-dependent perturbative approaches. Comparing to the case of an isolated quantum critical point, we find that non-equilibrium scaling behavior of a large class of physical observables may still be explained in terms of equilibrium critical exponents. However, the latter are in general non-trivially path-dependent, and detailed knowledge about the time-dependent excitation process becomes essential. In particular, …


Probing The Quantum Coherence Of A Nanomechanical Resonator Using A Superconducting Qubit: I. Echo Scheme, A. D. Armour, M. P. Blencowe Sep 2008

Probing The Quantum Coherence Of A Nanomechanical Resonator Using A Superconducting Qubit: I. Echo Scheme, A. D. Armour, M. P. Blencowe

Dartmouth Scholarship

We propose a scheme in which the quantum coherence of a nanomechanical resonator can be probed using a superconducting qubit. We consider a mechanical resonator coupled capacitively to a Cooper pair box and assume that the superconducting qubit is tuned to the degeneracy point so that its coherence time is maximized and the electro-mechanical coupling can be approximated by a dispersive Hamiltonian. When the qubit is prepared in a superposition of states, this drives the mechanical resonator progressively into a superposition which in turn leads to apparent decoherence of the qubit. Applying a suitable control pulse to the qubit allows …


Probing The Quantum Coherence Of A Nanomechanical Resonator Using A Superconducting Qubit: Ii. Implementation, M. P. Blencowe, A. D. Armour Sep 2008

Probing The Quantum Coherence Of A Nanomechanical Resonator Using A Superconducting Qubit: Ii. Implementation, M. P. Blencowe, A. D. Armour

Dartmouth Scholarship

We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper (Armour A D and Blencowe M P 2008 New. J. Phys. 10 095004). The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled …


Quantum Analysis Of A Nonlinear Microwave Cavity-Embedded Dc Squid Displacement Detector, P. D. Nation, M. P. Blencowe, E. Buks Sep 2008

Quantum Analysis Of A Nonlinear Microwave Cavity-Embedded Dc Squid Displacement Detector, P. D. Nation, M. P. Blencowe, E. Buks

Dartmouth Scholarship

We carry out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector, comprising a SQUID with mechanically compliant loop segment, which is embedded in a microwave transmission line resonator. The SQUID is approximated as a nonlinear current-dependent inductance, inducing an external flux tunable nonlinear Duffing self-interaction term in the microwave resonator mode equation. Motion of the compliant SQUID loop segment is transduced inductively through changes in the external flux threading SQUID loop, giving a ponderomotive radiation pressure-type coupling between the microwave and mechanical resonator modes. Expressions are derived for the detector signal response and noise, …


Quantum Analysis Of A Linear Dc Squid Mechanical Displacement Detector, M. P. Blencowe, E. Buks Jul 2007

Quantum Analysis Of A Linear Dc Squid Mechanical Displacement Detector, M. P. Blencowe, E. Buks

Dartmouth Scholarship

We provide a quantum analysis of a dc SQUID mechanical displacement detector within the subcritical Josephson current regime. A segment of the SQUID loop forms the mechanical resonator and motion of the latter is transduced inductively through changes in the flux threading the loop. Expressions are derived for the detector signal response and noise, which are used to evaluate the position and force detection sensitivity. We also investigate cooling of the mechanical resonator due to detector back reaction.


Decoherence And Recoherence In A Vibrating Rf Squid, Eyal Buks, M. P. Blencowe Nov 2006

Decoherence And Recoherence In A Vibrating Rf Squid, Eyal Buks, M. P. Blencowe

Dartmouth Scholarship

We study an rf SQUID, in which a section of the loop is a freely suspended beam that is allowed to oscillate mechanically. The coupling between the rf SQUID and the mechanical resonator originates from the dependence of the total magnetic flux threading the loop on the displacement of the resonator. Motion of the latter affects the visibility of Rabi oscillations between the two lowest energy states of the rf SQUID. We address the feasibility of experimental observation of decoherence and recoherence, namely decay and rise of the visibility, in such a system.


Dynamics Of A Nanomechanical Resonator Coupled To A Superconducting Single-Electron Transistor, M. P. Blencowe, J. Imbers, A. D. Armour Nov 2005

Dynamics Of A Nanomechanical Resonator Coupled To A Superconducting Single-Electron Transistor, M. P. Blencowe, J. Imbers, A. D. Armour

Dartmouth Scholarship

We present an analysis of the dynamics of a nanomechanical resonator coupled to a superconducting single-electron transistor (SSET) in the vicinity of Josephson quasi-particle (JQP) and double Josephson quasi-particle (DJQP) resonances. For weak coupling and wide separation of dynamical timescales, we find that for either superconducting resonances the dynamics of the resonator are given by a Fokker–Planck equation, i.e. the SSET behaves effectively as an equilibrium heat bath, characterized by an effective temperature, which also damps the resonator and renormalizes its frequency. Depending on the gate and drain–source voltage bias points with respect to the superconducting resonance, the SSET can …