Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics

Chapman University

Superconductivity

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physics

Gate-Controlled Supercurrent Effect In Dry-Etched Dayem Bridges Of Non-Centrosymmetric Niobium Rhenium, Jennifer Koch, Carla Cirillo, Sebastiano Battisti, Leon Ruf, Zahra Makhdoumi Kakhaki, Alessandro Paghi, Armen Gulian, Serafim Teknowijoyo, Giorgio De Simoni, Francesco Giazotto, Carmine Attanasio, Elke Scheer, Angelo Di Bernardo Apr 2024

Gate-Controlled Supercurrent Effect In Dry-Etched Dayem Bridges Of Non-Centrosymmetric Niobium Rhenium, Jennifer Koch, Carla Cirillo, Sebastiano Battisti, Leon Ruf, Zahra Makhdoumi Kakhaki, Alessandro Paghi, Armen Gulian, Serafim Teknowijoyo, Giorgio De Simoni, Francesco Giazotto, Carmine Attanasio, Elke Scheer, Angelo Di Bernardo

Mathematics, Physics, and Computer Science Faculty Articles and Research

The application of a gate voltage to control the superconducting current flowing through a nanoscale superconducting constriction, named as gate-controlled supercurrent (GCS), has raised great interest for fundamental and technological reasons. To gain a deeper understanding of this effect and develop superconducting technologies based on it, the material and physical parameters crucial for the GCS effect must be identified. Top-down fabrication protocols should also be optimized to increase device scalability, although studies suggest that top-down fabricated devices are more resilient to show a GCS. Here, we investigate gated superconducting nanobridges made with a top-down fabrication process from thin films of …


High-Frequency Diode Effect In Superconducting Nb3Sn Microbridges, Sara Chahid, Serafim Teknowijoyo, Iris Mowgood, Armen Gulian Feb 2023

High-Frequency Diode Effect In Superconducting Nb3Sn Microbridges, Sara Chahid, Serafim Teknowijoyo, Iris Mowgood, Armen Gulian

Mathematics, Physics, and Computer Science Faculty Articles and Research

The superconducting diode effect has recently been reported in a variety of systems and different symmetry-breaking mechanisms have been examined. However, the frequency range of these potentially important devices still remains obscure. We investigated superconducting microbridges of Nb3Sn in out-of-plane magnetic fields; optimum magnetic fields of ∼10 mT generate ∼10% diode efficiency, while higher fields of ∼15–20 mT quench the effect. The diode changes its polarity with magnetic field reversal. We documented superconductive diode rectification at frequencies up to 100 kHz, the highest reported as of today. Interestingly, the bridge resistance during diode operation reaches a value that is a …


Upper Limits On A Possible Gluon Mass, Shmuel Nussinov, Robert Shrock Jan 2010

Upper Limits On A Possible Gluon Mass, Shmuel Nussinov, Robert Shrock

Mathematics, Physics, and Computer Science Faculty Articles and Research

We analyze upper limits on a possible gluon mass, mg. We first discuss various ways to modify quantum chromodynamics to include m(g) not equal 0, including a bare mass, a Higgs mechanism, and dynamical breaking of color SU(3)(c). From an examination of experimental data, we infer an upper limit m(g) < O(1) MeV. As part of our analysis, we show that a claim, hitherto unrefuted in the literature, of a much stronger upper limit on m(g), is invalid. We discuss subtleties in interpreting gluon mass limits in view of the fact that at scales below Lambda(QCD), quantum chromodynamics is strongly coupled, perturbation theory is not reliable, and the physics is not accurately described in terms of the Lagrangian degrees of freedom, including gluons. We also point out a fundamental difference in the behavior of quantum chromodynamics with a nonzero gluon mass and a weakly coupled gauge theory with a gauge boson mass.