Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Sufficient Conditions For Uniqueness Of The Weak Value, Justin Dressel, Andrew N. Jordan Dec 2011

Sufficient Conditions For Uniqueness Of The Weak Value, Justin Dressel, Andrew N. Jordan

Mathematics, Physics, and Computer Science Faculty Articles and Research

We review and clarify the sufficient conditions for uniquely defining the generalized weak value as the weak limit of a conditioned average using the contextual values formalism introduced in Dressel, Agarwal and Jordan (2010 Phys. Rev. Lett. 104 240401). We also respond to criticism of our work by Parrott (arXiv:1105.4188v1) concerning a proposed counter-example to the uniqueness of the definition of the generalized weak value. The counter-example does not satisfy our prescription in the case of an underspecified measurement context. We show that when the contextual values formalism is properly applied to this example, a natural interpretation of the …


Theoretical Analysis Of Quantum Ghost Imaging Through Turbulence, Kam Wai Clifford Chan, D. S. Simon, A. V. Sergienko, Nicholas D. Hardy, Jeffrey H. Shapiro, P. Ben Dixon, Gregory A. Howland, John C. Howell, Joseph H. Eberly, Malcolm N. O'Sullivan, Brandon Rodenburg, Robert W. Boyd Oct 2011

Theoretical Analysis Of Quantum Ghost Imaging Through Turbulence, Kam Wai Clifford Chan, D. S. Simon, A. V. Sergienko, Nicholas D. Hardy, Jeffrey H. Shapiro, P. Ben Dixon, Gregory A. Howland, John C. Howell, Joseph H. Eberly, Malcolm N. O'Sullivan, Brandon Rodenburg, Robert W. Boyd

Mathematics, Physics, and Computer Science Faculty Articles and Research

Atmospheric turbulence generally affects the resolution and visibility of an image in long-distance imaging. In a recent quantum ghost imaging experiment [P. B. Dixon et al., Phys. Rev. A 83, 051803 (2011)], it was found that the effect of the turbulence can nevertheless be mitigated under certain conditions. This paper gives a detailed theoretical analysis to the setup and results reported in the experiment. Entangled photons with a finite correlation area and a turbulence model beyond the phase screen approximation are considered.


Quantum Ghost Imaging Through Turbulence, John C. Howell May 2011

Quantum Ghost Imaging Through Turbulence, John C. Howell

Mathematics, Physics, and Computer Science Faculty Articles and Research

We investigate the effect of turbulence on quantum ghost imaging. We use entangled photons and demonstrate that for a specific experimental configuration the effect of turbulence can be greatly diminished. By decoupling the entangled photon source from the ghost-imaging central image plane, we are able to dramatically increase the ghost-image quality. When imaging a test pattern through turbulence, this method increases the imaged pattern visibility from V=0.15±0.04 to 0.42±0.04.


Experimental Violation Of Two-Party Leggett-Garg Inequalities With Semiweak Measurements, Justin Dressel, C. J. Broadbent, J. C. Howell, Andrew N. Jordan Jan 2011

Experimental Violation Of Two-Party Leggett-Garg Inequalities With Semiweak Measurements, Justin Dressel, C. J. Broadbent, J. C. Howell, Andrew N. Jordan

Mathematics, Physics, and Computer Science Faculty Articles and Research

We generalize the derivation of Leggett-Garg inequalities to systematically treat a larger class of experimental situations by allowing multiparticle correlations, invasive detection, and ambiguous detector results. Furthermore, we show how many such inequalities may be tested simultaneously with a single setup. As a proof of principle, we violate several such two-particle inequalities with data obtained from a polarization-entangled biphoton state and a semiweak polarization measurement based on Fresnel reflection. We also point out a nontrivial connection between specific two-party Leggett-Garg inequality violations and convex sums of strange weak values.


Superluminal Neutrinos At Opera Confront Pion Decay Kinematics, Ramanath Cowsick, Shmuel Nussinov, Utpal Sarkar Jan 2011

Superluminal Neutrinos At Opera Confront Pion Decay Kinematics, Ramanath Cowsick, Shmuel Nussinov, Utpal Sarkar

Mathematics, Physics, and Computer Science Faculty Articles and Research

Violation of Lorentz invariance (VLI) has been suggested as an explanation of the superluminal velocities of muon neutrinos reported by OPERA. In this Letter, we show that the amount of VLI required to explain this result poses severe difficulties with the kinematics of the pion decay, extending its lifetime and reducing the momentum carried away by the neutrinos. We show that the OPERA experiment limits alpha = (upsilon(v) - c)/c < 4 x 10(-6). We then take recourse to cosmic-ray data on the spectrum of muons and neutrinos generated in Earth's atmosphere to provide a stronger bound on VLI: (upsilon - c)/c < 10(-12).


Dynamical Features Of Interference Phenomena In The Presence Of Entanglement, Tirzah Kaufherr, Yakir Aharonov, Shmuel Nussinov, Sandu Popescu, Jeff Tollaksen Jan 2011

Dynamical Features Of Interference Phenomena In The Presence Of Entanglement, Tirzah Kaufherr, Yakir Aharonov, Shmuel Nussinov, Sandu Popescu, Jeff Tollaksen

Mathematics, Physics, and Computer Science Faculty Articles and Research

A strongly interacting, and entangling, heavy nonrecoiling external particle effects a significant change of the environment. Described locally, the corresponding entanglement event is a generalized electric Aharonov-Bohm effect, which differs from the original one in a crucial way. We propose a gedanken interference experiment. The predicted shift of the interference pattern is due to a self-induced or "private" potential difference experienced while the particle is in vacuum. We show that all nontrivial Born-Oppenheimer potentials are "private" potentials. We apply the Born-Oppenheimer approximation to interference states. Using our approach, we calculate the relative phase of the external heavy particle as well …