Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Determination Of Vortex Locations In A 2x2 Array Of Josephson Junctions For Topological Quantum Computation, Casey L. Kowalski Mar 2022

Determination Of Vortex Locations In A 2x2 Array Of Josephson Junctions For Topological Quantum Computation, Casey L. Kowalski

Theses and Dissertations

A large barrier to practical quantum computation exists in the form of qubit decoherence, which leads to high noise and error when implementing quantum algorithms. A potential solution to this problem is the use of topologically-protected Majorana-based qubits, as their nonlocal nature and unique non-abelian exchange statistics render them virtually immune to decoherence while still allowing the state to be easily manipulated. For such a qubit to be constructed, it is essential to know the locations of the Majorana-hosting vortices in the system. This work presents a solution for the formation locations of vortices in a 2x2 superconducting island array, …


Solving Combinatorial Optimization Problems Using The Quantum Approximation Optimization Algorithm, Nicholas J. Guerrero Mar 2020

Solving Combinatorial Optimization Problems Using The Quantum Approximation Optimization Algorithm, Nicholas J. Guerrero

Theses and Dissertations

The Quantum Approximation Optimization Algorithm (QAOA) is one of the most promising applications for noisy intermediate-scale quantum machines due to the low number of qubits required as well as the relatively low gate count. Much work has been done on QAOA regarding algorithm implementation and development; less has been done checking how these algorithms actually perform on a real quantum computer. Using the IBM Q Network, several instances of combinatorial optimization problems (the max cut problem and dominating set problem) were implemented into QAOA and analyzed. It was found that only the smallest toy max cut algorithms performed adequately: those …


Scattering Matrix Elements For The Nonadiabatic Collision B (2PJ) + H2 (1Σ+G, Ν, Ј) ↔ B (2PJ’) + H2 (1Σ+G, Ν’, J’)., Luke A. Barger Dec 2010

Scattering Matrix Elements For The Nonadiabatic Collision B (2PJₐ) + H2 (1Σ+G, Ν, Ј) ↔ B (2PJ’ₐ) + H2 (1Σ+G, Ν’, J’)., Luke A. Barger

Theses and Dissertations

Scattering matrix elements are calculated for the nonadiabatic inelastic collision B (2Pj) + H2 (1Σ+g, ν, ј) ↔ B (2Pj’) + H2 (1Σ+g, ν’, j’). This calculation utilizes the effective potential energy surfaces for this collision generated by Garvin along with a correction to the asymptotic H2 potential. Wavepackets are propagated on these surfaces using a split-operator propagator. This propagation yields correlation functions between reactant and product Møller states which are used to calculate the scattering …


A General Quantum Mechanical Method To Predict Positron Spectroscopy, Paul E. Adamson Sep 2007

A General Quantum Mechanical Method To Predict Positron Spectroscopy, Paul E. Adamson

Theses and Dissertations

The nuclear-electronic orbital (NEO) method was modified and extended to positron systems. NEO - second-order Moeller-Plesset perturbation (MP2) energies and annihilation rates were calculated for the positronium hydride (PsH) system, and the effects of basis set size on correlation energies captured with the NEO-MP2 and NEO-full configuration interaction (FCI) methods are compared and discussed. Equilibrium geometries and vibrational energy levels were computed for the LiX and e+LiX (X = H, F, Cl) systems at the MP2 and NEO-MP2 levels. It was found that anharmonicity plays a significant role, specifically in the differences between the vibrational energy levels of …


Quantum Mechanical Calculations Of Monoxides Of Silicon Carbide Molecules, John W. Roberts Jr. Mar 2003

Quantum Mechanical Calculations Of Monoxides Of Silicon Carbide Molecules, John W. Roberts Jr.

Theses and Dissertations

Modern semiconductor devices are principally made using the element silicon. In recent years, silicon carbide (SiC), with its wide band-gap, high thermal conductivity, and radiation resistance, has shown prospects as a semiconductor material for use in high temperature and radiation environments such as jet engines and satellites. A limiting factor in the performance of many SiC semiconductor components is the presence of lattice defects formed at oxide dielectric junctions during processing. Recent theoretical work has used small quantum mechanical systems embedded in larger molecular mechanics structures to attempt to better understand SiC surfaces and bulk materials and their oxidation. This …