Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Unification Of Gravity And Quantum Theory, Adam Daniels Jan 2017

Unification Of Gravity And Quantum Theory, Adam Daniels

Faculty-Sponsored Student Research & Capstones

An overview of the four fundamental forces of physics as described by the Standard Model (SM) and prevalent unifying theories beyond it is provided. Background knowledge of the particles governing the fundamental forces is provided, as it will be useful in understanding the way in which the unification efforts of particle physics has evolved, either from the SM, or apart from it. It is shown that efforts to provide a quantum theory of gravity have allowed supersymmetry (SUSY) and M-Theory to become two of the prevailing theories for unifying gravity with the remaining non-gravitational forces.


Can Bohmian Mechanics Be Made Relativistic?, Detlef Dürr, Sheldon Goldstein, Travis Norsen, Ward Struyve, Nino Zaghì Dec 2013

Can Bohmian Mechanics Be Made Relativistic?, Detlef Dürr, Sheldon Goldstein, Travis Norsen, Ward Struyve, Nino Zaghì

Physics: Faculty Publications

In relativistic space-time, Bohmian theories can be formulated by introducing a privileged foliation of space-time. The introduction of such a foliation – as extra absolute space-time structure – would seem to imply a clear violation of Lorentz invariance, and thus a conflict with fundamental relativity. Here, we consider the possibility that, instead of positing it as extra structure, the required foliation could be covariantly determined by the wave function. We argue that this allows for the formulation of Bohmian theories that seem to qualify as fundamentally Lorentz invariant. We conclude with some discussion of whether or not they might also …


Xx. Meaning In The Physical Sciences, Robert L. Bloom, Basil L. Crapster, Harold L. Dunkelberger, Charles H. Glatfelter, Richard T. Mara, Norman E. Richardson, W. Richard Schubart Jan 1958

Xx. Meaning In The Physical Sciences, Robert L. Bloom, Basil L. Crapster, Harold L. Dunkelberger, Charles H. Glatfelter, Richard T. Mara, Norman E. Richardson, W. Richard Schubart

Section XX: Meaning in the Physical Sciences

The twentieth century has seen two major revolutions in our theories of physics concerning nature, and these have made us change many of our concepts about the terms in which nature can be described. The new theories born in these revolutions are the theory of relativity and of quantum mechanics. The biological sciences had their revolutions in the nineteenth century, and while remarkable progress has been made since, nothing comparable to that upheaval has occurred in this century. Of the two massive changes in the concepts of the physical sciences, we can discuss but one here. [excerpt]