Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Kapitza-Dirac Blockade: A Universal Tool For The Deterministic Preparation Of Non-Gaussian Oscillator States, Wayne Cheng-Wei Huang, Herman Batelaan, Markus Arndt Jun 2021

Kapitza-Dirac Blockade: A Universal Tool For The Deterministic Preparation Of Non-Gaussian Oscillator States, Wayne Cheng-Wei Huang, Herman Batelaan, Markus Arndt

Department of Physics and Astronomy: Faculty Publications

Harmonic oscillators count among the most fundamental quantum systems with important applications in molecular physics, nanoparticle trapping, and quantum information processing. Their equidistant energy level spacing is often a desired feature, but at the same time a challenge if the goal is to deterministically populate specific eigenstates. Here, we show how interference in the transition amplitudes in a bichromatic laser field can suppress the sequential climbing of harmonic oscillator states (Kapitza-Dirac blockade) and achieve selective excitation of energy eigenstates, cat states, and other non-Gaussian states. This technique can transform the harmonic oscillator into a coherent two-level system or be used …


Characterization And Benchmarking Of Quantum Computers, Megan L. Dahlhauser May 2021

Characterization And Benchmarking Of Quantum Computers, Megan L. Dahlhauser

Doctoral Dissertations

Quantum computers are a promising technology expected to provide substantial speedups to important computational problems, but modern quantum devices are imperfect and prone to noise. In order to program and debug quantum computers as well as monitor progress towards more advanced devices, we must characterize their dynamics and benchmark their performance. Characterization methods vary in measured quantities and computational requirements, and their accuracy in describing arbitrary quantum devices in an arbitrary context is not guaranteed. The leading techniques for characterization are based on fine-grain physical models that are typically accurate but computationally expensive. This raises the question of how to …


Quantum Simulation Of Schrödinger's Equation, Mohamed Eltohfa Mar 2021

Quantum Simulation Of Schrödinger's Equation, Mohamed Eltohfa

Capstone and Graduation Projects

Quantum computing is one of the promising active areas in physics research. This is because of the potential of quantum algorithms to outperform their classical counterparts. Grover’s search algorithm has a quadratic speed-up compared to the classical linear search. The quantum simulation of Schrödinger’s equation has an exponential memory save-up compared to the classical simulation. In this thesis, the ideas and tools of quantum computing are reviewed. Grover’s algorithm is studied and simulated as an example. Using the Qiskit quantum computing library, a code to simulate Schrödinger’s equation for a particle in one dimension is developed, simulated locally, and run …


Reflection And Transmission Of Electromagnetic Pulses At A Planar Dielectric Interface: Theory And Quantum Lattice Simulations, Abhay K. Ram, George Vahala, Linda Vahala, Min Soe Jan 2021

Reflection And Transmission Of Electromagnetic Pulses At A Planar Dielectric Interface: Theory And Quantum Lattice Simulations, Abhay K. Ram, George Vahala, Linda Vahala, Min Soe

Electrical & Computer Engineering Faculty Publications

There is considerable interest in the application of quantum information science to advance computations in plasma physics. A particular point of curiosity is whether it is possible to take advantage of quantum computers to speed up numerical simulations relative to conventional computers. Many of the topics in fusion plasma physics are classical in nature. In order to implement them on quantum computers, it will require couching a classical problem in the language of quantum mechanics. Electromagnetic waves are routinely used in fusion experiments to heat a plasma or to generate currents in the plasma. The propagation of electromagnetic waves is …