Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics

PDF

2016

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 77

Full-Text Articles in Physics

Probing Quantumness With Joint Continuous Measurements Of Non-Commuting Observables, Luis Pedro García-Pintos, Justin Dressel Dec 2016

Probing Quantumness With Joint Continuous Measurements Of Non-Commuting Observables, Luis Pedro García-Pintos, Justin Dressel

Mathematics, Physics, and Computer Science Faculty Articles and Research

We analyze the continuous measurement of two noncommuting observables for a qubit, and investigate whether the simultaneously observed noisy signals are consistent with the evolution of an equivalent classical system. Following the approach outlined by Leggett and Garg, we show that the readouts violate macrorealistic inequalities for arbitrarily short temporal correlations. Moreover, the derived inequalities are manifestly violated even in the absence of Hamiltonian evolution, unlike for Leggett-Garg inequalities that use a single continuous measurement. Such a violation should indicate the failure of at least one postulate of macrorealism: either physical quantities do not have well-defined values at all times …


Linear Feedback Stabilization For A Continuously Monitored Qubit, Taylor Lee Patti, A. Chantasri, Justin Dressel, A. N. Jordan Dec 2016

Linear Feedback Stabilization For A Continuously Monitored Qubit, Taylor Lee Patti, A. Chantasri, Justin Dressel, A. N. Jordan

Student Scholar Symposium Abstracts and Posters

In quantum mechanics, standard or strong measurement approaches generally result in the collapse of an ensemble of wavefunctions into a stochastic mixture of eigenstates. On the other hand, continuous or weak measurements have the propensity to dynamically control the evolution of quantum states over time, guiding the trajectory of the state into non-trivial superpositions and maintaining state purity. This kind of measurement-induced state steering is of great theoretical and experimental interest for the harnessing of quantum bits or "qubits", which are the fundamental unit of the emerging quantum computer. We explore continuous measurement-based quantum state stabilization through linear feedback control …


Combinatorial Algorithms For Perturbation Theory And Application On Quantum Computing, Yudong Cao Dec 2016

Combinatorial Algorithms For Perturbation Theory And Application On Quantum Computing, Yudong Cao

Open Access Dissertations

Quantum computing is an emerging area between computer science and physics. Numerous problems in quantum computing involve quantum many-body interactions. This dissertation concerns the problem of simulating arbitrary quantum many-body interactions using realistic two-body interactions. To address this issue, a general class of techniques called perturbative reductions (or perturbative gadgets) is adopted from quantum complexity theory and in this dissertation these techniques are improved for experimental considerations. The idea of perturbative reduction is based on the mathematical machinery of perturbation theory in quantum physics. A central theme of this dissertation is then to analyze the combinatorial structure of the perturbation …


Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix Dec 2016

Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix

Graduate Theses and Dissertations

As is commonly known, the world is full of technological wonders, where a multitude of electronic devices and instruments continuously help push the boundaries of scientific knowledge and discovery. These new devices and instruments of science must be utilized at peak efficiency in order to benefit humanity with the most advanced scientific knowledge. In order to attain this level of efficiency, the materials which make up these electronics, or possibly more important, the fundamental characteristics of these materials, must be fully understood. The following research attempted to uncover the properties and characteristics of a selected family of materials. Herein, zinc …


Discord And Global Discord In Systems Of Coupled Quantum Dots In Driven Cavities With Dissipation, And A Method For The Calculation Of Global Discord, Willa Danielle Rawlinson Dec 2016

Discord And Global Discord In Systems Of Coupled Quantum Dots In Driven Cavities With Dissipation, And A Method For The Calculation Of Global Discord, Willa Danielle Rawlinson

Graduate Theses and Dissertations

In the field of quantum information, which is subdivided into quantum computing and quantum cryptography, quantum correlations are essential for a performance or security boost not achievable with classical means. Various quantum correlation measures exist for evaluating a state’s potential to be a qubit (quantum bit). Entanglement, or nonseparability of quantum states, is the older, better known class of measures. However, for a mixed state, quantum entanglement is an incomplete measure of quantumness. Quantum discord, and its multibody extension global discord, encompass all quantum correlations. We study systems of coupled quantum dots using these measures.

We study the discord of …


A Generalized Polynomial Identity Arising From Quantum Mechanics, Shashikant B. Mulay, John J. Quinn, Mark A. Shattuck Dec 2016

A Generalized Polynomial Identity Arising From Quantum Mechanics, Shashikant B. Mulay, John J. Quinn, Mark A. Shattuck

Applications and Applied Mathematics: An International Journal (AAM)

We establish a general identity that expresses a Pfaffian of a certain matrix as a quotient of homogeneous polynomials. This identity arises in the study of weakly interacting many-body systems and its proof provides another way of realizing the equivalence of two proposed types of trial wave functions used to describe such systems. In the proof of our identity, we make use of only elementary linear algebra and combinatorics and thereby avoid use of more advanced conformal field theory in establishing the aforementioned equivalence.


Properties Of The Schrödinger Theory Of Electrons In Electromagnetic Fields, Viraht Sahni, Xiao-Yin Pan Nov 2016

Properties Of The Schrödinger Theory Of Electrons In Electromagnetic Fields, Viraht Sahni, Xiao-Yin Pan

Publications and Research

The Schrödinger theory of electrons in an external electromagnetic field can be described from the perspective of the individual electron via the ‘Quantal Newtonian’ laws (or differential virial theorems). These laws are in terms of ‘classical’ fields whose sources are quantal expectations of Hermitian operators taken with respect to the wave function. The laws reveal the following physics: (a) In addition to the external field, each electron experiences an internal field whose components are representative of a specific property of the system such as the correlations due to the Pauli exclusion principle and Coulomb repulsion, the electron density, kinetic effects, …


Resonant Light Scattering From Semiconductor Quantum Dots, Kumarasiri Konthasinghe Nov 2016

Resonant Light Scattering From Semiconductor Quantum Dots, Kumarasiri Konthasinghe

USF Tampa Graduate Theses and Dissertations

In this work, resonant laser spectroscopy has been utilized in two major projects --resonance fluorescence measurements in solid-state quantum-confined nanostructures and laser-induced fluorescence measurements in gases. The first project focuses on studying resonant light-matter interactions in semiconductor quantum dots "artificial atoms" with potential applications in quantum information science. Of primary interest is the understanding of fundamental processes and how they are affected by the solid-state matrix. Unlike atoms, quantum dots are susceptible to a variety of environmental influences such as phonon scattering and spectral diffusion. These interactions alter the desired properties of the scattered light and hinder uses in certain …


Prospects For Infrared Quantum Gravity: From Cosmology To Black Holes, Basem K. Mahmoud El-Menoufi Nov 2016

Prospects For Infrared Quantum Gravity: From Cosmology To Black Holes, Basem K. Mahmoud El-Menoufi

Doctoral Dissertations

Although perturbatively non-renormalizable, general relativity is a perfectly valid quantum theory at low energies. Treated as an effective field theory one is able to make genuine quantum predictions by applying the conventional rules of quantum field theory. The low energy degrees of freedom and couplings of quantum gravity are fully dictated by the symmetries of general relativity. To realize the full EFT treatment one has to supplement the theory with experimental input necessary to fix the Wilson coefficients of the most general Lagrangian. In spite of the fact that this is not feasible, one can still extract the leading quantum …


Neutron Correlations In The Decay Of The First Excited State Of 11li, Jenna K. Smith, Thomas J. Baumann, Daniel Bazin, James Brown, Paul A. Deyoung, Nathan H. Frank, Michael D. Jones, Zack Kohley, Bryan A. Luther, B. S. Marks, Artemis Spyrou, Sharon L. Stephenson, Michael R. Thoennessen, Alexander S. Volya Nov 2016

Neutron Correlations In The Decay Of The First Excited State Of 11li, Jenna K. Smith, Thomas J. Baumann, Daniel Bazin, James Brown, Paul A. Deyoung, Nathan H. Frank, Michael D. Jones, Zack Kohley, Bryan A. Luther, B. S. Marks, Artemis Spyrou, Sharon L. Stephenson, Michael R. Thoennessen, Alexander S. Volya

Physics and Astronomy Faculty Publications

The decay of unbound excited 11Li was measured after being populated by a two-proton removal from a 13B beam at 71 MeV/nucleon. Decay energy spectra and Jacobi plots were obtained from measurements of the momentum vectors of the 9Li fragment and neutrons. A resonance at an excitation energy of ∼1.2 MeV was observed. The kinematics of the decay are equally well fit by a simple dineutron-like model or a phase-space model that includes final state interactions. A sequential decay model can be excluded.


Art As A Tool In Quantum Mechanics, Zachary Vealey Oct 2016

Art As A Tool In Quantum Mechanics, Zachary Vealey

Oglethorpe Journal of Undergraduate Research

Revolutions in scientific thought often have substantial societal consequences, however, cultural assimilation of the new idea is contingent on a widespread understanding. Historically recent developments in modern physics, such as quantum mechanics and general relativity, suffer from their notoriously perceived difficulty, thus hindering cultural assimilation. To address this issue, art can serve as a useful complement to a student studying quantum mechanics - especially through its interpretation of delocalized electron density. A cross-disciplinary approach affords a greater diversity in participation and consequently results in a broader scientific outreach.


Some 2-Categorical Aspects In Physics, Arthur Parzygnat Sep 2016

Some 2-Categorical Aspects In Physics, Arthur Parzygnat

Dissertations, Theses, and Capstone Projects

2-categories provide a useful transition point between ordinary category theory and infinity-category theory where one can perform concrete computations for applications in physics and at the same time provide rigorous formalism for mathematical structures appearing in physics. We survey three such broad instances. First, we describe two-dimensional algebra as a means of constructing non-abelian parallel transport along surfaces which can be used to describe strings charged under non-abelian gauge groups in string theory. Second, we formalize the notion of convex and cone categories, provide a preliminary categorical definition of entropy, and exhibit several examples. Thirdly, we provide a universal description …


Local Spin Operators For Fermion Simulations, James D. Whitfield, Vojtěch Havlíček, Matthias Troyer Sep 2016

Local Spin Operators For Fermion Simulations, James D. Whitfield, Vojtěch Havlíček, Matthias Troyer

Dartmouth Scholarship

Digital quantum simulation of fermionic systems is important in the context of chemistry and physics. Simulating fermionic models on general purpose quantum computers requires imposing a fermionic algebra on qubits. The previously studied Jordan-Wigner and Bravyi-Kitaev transformations are two techniques for accomplishing this task. Here, we reexamine an auxiliary fermion construction which maps fermionic operators to local operators on qubits. The local simulation is performed by relaxing the requirement that the number of qubits should match the number of single-particle states. Instead, auxiliary sites are introduced to enable nonconsecutive fermionic couplings to be simulated with constant low-rank tensor products on …


Prioritizing Investment In Residential Energy Efficiency And Renewable Energy: A Case Study For The U.S. Midwest, Robert J. Brecha, Austin Mitchell, Kevin P. Hallinan, J. Kelly Kissock Sep 2016

Prioritizing Investment In Residential Energy Efficiency And Renewable Energy: A Case Study For The U.S. Midwest, Robert J. Brecha, Austin Mitchell, Kevin P. Hallinan, J. Kelly Kissock

J. Kissock

Residential building energy use is an important contributor to greenhouse gas emissions and in the United States represents about 20% of total energy consumption. A number of previous macro-scale studies of residential energy consumption and energy-efficiency improvements are mainly concerned with national or international aggregate potential savings. In this paper we look into the details of how a collection of specific homes in one region might reduce energy consumption and carbon emissions, with particular attention given to some practical limits to what can be achieved by upgrading the existing residential building stock. Using a simple model of residential, single-family home …


Dicke’S Superradiance In Astrophysics, Fereshteh Rajabi Sep 2016

Dicke’S Superradiance In Astrophysics, Fereshteh Rajabi

Electronic Thesis and Dissertation Repository

It is generally assumed that in the interstellar medium much of the emission emanating from atomic and molecular transitions within a radiating gas happen independently for each atom or molecule, but as was pointed out by R. H. Dicke in a seminal paper several decades ago this assumption does not apply in all conditions. As will be discussed in this thesis, and following Dicke’s original analysis, closely packed atoms/molecules can interact with their common electromagnetic field and radiate coherently through an effect he named superradiance. Superradiance is a cooperative quantum mechanical phenomenon characterized by high intensity, spatially compact, burst-like features …


Realisation Of Qudits In Coupled Potential Wells, Ariel Landau, Yakir Aharonov, Eliahu Cohen Aug 2016

Realisation Of Qudits In Coupled Potential Wells, Ariel Landau, Yakir Aharonov, Eliahu Cohen

Mathematics, Physics, and Computer Science Faculty Articles and Research

Quantum computation strongly relies on the realisation, manipulation and control of qubits. A central method for realizing qubits is by creating a double-well potential system with a significant gap between the first two eigenvalues and the rest. In this work we first revisit the theoretical grounds underlying the double-well qubit dynamics, then proceed to suggest novel extensions of these principles to a triple-well qutrit with periodic boundary conditions, followed by a general d-well analysis of qudits. These analyses are based on representations of the special unitary groups SU(d) which expose the systems' symmetry and employ them for performing computations. We …


The Quantum Universe: Philosophical Foundations And Oriental Medicine, Menas Kafatos, Keun-Hang Susan Yang Aug 2016

The Quantum Universe: Philosophical Foundations And Oriental Medicine, Menas Kafatos, Keun-Hang Susan Yang

Mathematics, Physics, and Computer Science Faculty Articles and Research

The existence of universal principles in both science and medicine implies that one canexplore their common applicability. Here we explore what we have learned from quantummechanics, phenomena such as entanglement and nonlocality, the role of participationof the observer, and how these may apply to oriental medicine. The universal principles ofintegrated polarity, recursion, and creative interactivity apply to all levels of existence and allhuman activities, including healing and medicine. This review examines the possibility thatwhat we have learned from quantum mechanics may provide clues to better understandthe operational principles of oriental medicine in an integrated way. Common to both isthe assertion …


Electron Correlations In Local Effective Potential Theory, Viraht Sahni, Xiao-Yin Pan, Tao Yang Aug 2016

Electron Correlations In Local Effective Potential Theory, Viraht Sahni, Xiao-Yin Pan, Tao Yang

Publications and Research

Local effective potential theory, both stationary-state and time-dependent, constitutes the mapping from a system of electrons in an external field to one of the noninteracting fermions possessing the same basic variable such as the density, thereby enabling the determination of the energy and other properties of the electronic system. This paper is a description via Quantal Density Functional Theory (QDFT) of the electron correlations that must be accounted for in such a mapping. It is proved through QDFT that independent of the form of external field, (a) it is possible to map to a model system possessing all the basic …


Quantum Enigma Machine: Experimentally Demonstrating Quantum Data Locking, Daniel J. Lum, John C. Howell, M. S. Allman, Thomas Gerrits, Varun B. Verma, Sae Woo Nam, Cosmo Lupo, Seth Lloyd Aug 2016

Quantum Enigma Machine: Experimentally Demonstrating Quantum Data Locking, Daniel J. Lum, John C. Howell, M. S. Allman, Thomas Gerrits, Varun B. Verma, Sae Woo Nam, Cosmo Lupo, Seth Lloyd

Mathematics, Physics, and Computer Science Faculty Articles and Research

Shannon proved in 1949 that information-theoretic-secure encryption is possible if the encryption key is used only once, is random, and is at least as long as the message itself. Notwithstanding, when information is encoded in a quantum system, the phenomenon of quantum data locking allows one to encrypt a message with a shorter key and still provide information-theoretic security. We present one of the first feasible experimental demonstrations of quantum data locking for direct communication and propose a scheme for a quantum enigma machine that encrypts 6 bits per photon (containing messages, new encryption keys, and forward error correction bits) …


Exact Solution Of Quadratic Fermionic Hamiltonians For Arbitrary Boundary Conditions, Abhijeet Alase, Emilio Cobanera, Gerardo Ortiz, Lorenza Viola Aug 2016

Exact Solution Of Quadratic Fermionic Hamiltonians For Arbitrary Boundary Conditions, Abhijeet Alase, Emilio Cobanera, Gerardo Ortiz, Lorenza Viola

Dartmouth Scholarship

We present a procedure for exactly diagonalizing finite-range quadratic fermionic Hamiltonians with arbitrary boundary conditions in one of D dimensions, and periodic in the remaining D−1. The key is a Hamiltonian-dependent separation of the bulk from the boundary. By combining information from the two, we identify a matrix function that fully characterizes the solutions, and may be used to construct an efficiently computable indicator of bulk-boundary correspondence. As an illustration, we show how our approach correctly describes the zero-energy Majorana modes of a time-reversal-invariant s-wave two-band superconductor in a Josephson ring configuration, and predicts that a fractional 4π-periodic Josephson effect …


Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev Aug 2016

Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Efficient modeling of electromagnetic processes in optical and plasmonic metamaterials is important for enabling new and exciting ways to manipulate light for advanced applications. In this work, we put together a tool for numerical simulation of propagation of normally incident light through a nanostructured multilayer composite material. The user builds a unit cell of a given material layer-by-layer starting from a substrate up to a superstrate, splitting each layer further into segments. The segments are defined by width and material -- dielectric, metal or active medium. Simulations are performed with the finite difference time domain (FDTD) method. A database of …


Ultracold Quantum Scattering In The Presence Of Synthetic Spin-Orbit Coupling, Su-Ju Wang Aug 2016

Ultracold Quantum Scattering In The Presence Of Synthetic Spin-Orbit Coupling, Su-Ju Wang

Open Access Dissertations

Two-body scattering constitutes one of the most fundamental processes in various physical systems ranging from ultracold dilute quantum gases to energetic quark- gluon plasmas. In this dissertation, we study the low-energy atomic collision physics in the presence of synthetic gauge fields, which are generated by atom-light interaction. One category of synthetic gauge fields is the artificial spin-orbit coupling. We discuss three different aspects in scattering theory: ultracold collision, scattering resonance, and bound state formation from a few-body perspective when the atomic spin states are coupled with their center-of-mass motion. The understanding of the spin-orbit effects on the modification of the …


Measuring A Transmon Qubit In Circuit Qed: Dressed Squeezed States, Mostafa Khezri, Eric Mlinar, Justin Dressel, A. N. Korotkov Jul 2016

Measuring A Transmon Qubit In Circuit Qed: Dressed Squeezed States, Mostafa Khezri, Eric Mlinar, Justin Dressel, A. N. Korotkov

Mathematics, Physics, and Computer Science Faculty Articles and Research

Using circuit QED, we consider the measurement of a superconducting transmon qubit via a coupled microwave resonator. For ideally dispersive coupling, ringing up the resonator produces coherent states with frequencies matched to transmon energy states. Realistic coupling is not ideally dispersive, however, so transmon-resonator energy levels hybridize into joint eigenstate ladders of the Jaynes–Cummings type. Previous work has shown that ringing up the resonator approximately respects this ladder structure to produce a coherent state in the eigenbasis (a dressed coherent state). We numerically investigate the validity of this coherent-state approximation to find two primary deviations. First, resonator ring-up leaks small …


Morphological And Material Effects In Van Der Waals Interactions, Jaime C. Hopkins Jul 2016

Morphological And Material Effects In Van Der Waals Interactions, Jaime C. Hopkins

Doctoral Dissertations

Van der Waals (vdW) interactions influence a variety of mesoscale phenomena, such as surface adhesion, friction, and colloid stability, and play increasingly important roles as science seeks to design systems on increasingly smaller length scales. Using the full Lifshitz continuum formulation, this thesis investigates the effects of system materials, shapes, and configurations and presents open-source software to accurately calculate vdW interactions. In the Lifshitz formulation, the microscopic composition of a material is represented by its bulk dielectric response. Small changes in a dielectric response can result in substantial variations in the strength of vdW interactions. However, the relationship between these …


Hadron Physics In Tests Of Fundamental Symmetries, Chien Yeah Seng Jul 2016

Hadron Physics In Tests Of Fundamental Symmetries, Chien Yeah Seng

Doctoral Dissertations

Low energy precision tests of fundamental symmetries provide excellent probes for the Beyond Standard Model Physics. Theoretical interpretations of these experiments often involve the application of non-perturbative Quantum Chromodynamics in the study of hadronic matrix elements that may either serve as signals of new physics or Standard Model backgrounds. In this work I present a series of studies on different hadronic matrix elements using various low-energy effective approaches to Quantum Chromodynamics, and discuss the impact of these studies on our knowledge of Standard Model and Beyond Standard Model physics.


Dynamical Decoupling Sequences For Multi-Qubit Dephasing Suppression And Long-Time Quantum Memory, Gerardo A. Paz-Silva, Seung-Woo Lee, Todd J. Green, Lorenza Viola Jul 2016

Dynamical Decoupling Sequences For Multi-Qubit Dephasing Suppression And Long-Time Quantum Memory, Gerardo A. Paz-Silva, Seung-Woo Lee, Todd J. Green, Lorenza Viola

Dartmouth Scholarship

We consider a class of multi-qubit dephasing models that combine classical noise sources and linear coupling to a bosonic environment, and are controlled by arbitrary sequences of dynamical decoupling pulses. Building on a general transfer filter-function framework for open-loop control, we provide an exact representation of the controlled dynamics for arbitrary stationary non-Gaussian classical and quantum noise statistics, with analytical expressions emerging when all dephasing sources are Gaussian. This exact characterization is used to establish two main results. First, we construct multi-qubit sequences that ensure maximum high-order error suppression in both the time and frequency domain and that can be …


Investigation Of Carbon Nanomaterials Embedded In A Cementitious Matrix, Clarissa A. Roe Jul 2016

Investigation Of Carbon Nanomaterials Embedded In A Cementitious Matrix, Clarissa A. Roe

Masters Theses & Specialist Projects

The objective of this thesis was to investigate whether the addition of carbon nanofibers had an effect on the splitting tensile strength of Hydro-Stone gypsum concrete. The carbon nanofibers used were single-walled carbon nanotubes (SWNT), buckminsterfullerene (C60), and graphene oxide (GO). Evidence of the nanofibers interacting with gypsum crystals in a connective manner was identified in both 1 mm thick concrete discs and concrete columns possessing a height of 2 in and a diameter of 1 in. Before imaging, the columns were subjected to a splitting tensile strength test. The results illustrate that while there is a general decrease in …


Prioritizing Investment In Residential Energy Efficiency And Renewable Energy: A Case Study For The U.S. Midwest, Robert J. Brecha, Austin Mitchell, Kevin P. Hallinan, J. Kelly Kissock Jun 2016

Prioritizing Investment In Residential Energy Efficiency And Renewable Energy: A Case Study For The U.S. Midwest, Robert J. Brecha, Austin Mitchell, Kevin P. Hallinan, J. Kelly Kissock

Kevin Hallinan

Residential building energy use is an important contributor to greenhouse gas emissions and in the United States represents about 20% of total energy consumption. A number of previous macro-scale studies of residential energy consumption and energy-efficiency improvements are mainly concerned with national or international aggregate potential savings. In this paper we look into the details of how a collection of specific homes in one region might reduce energy consumption and carbon emissions, with particular attention given to some practical limits to what can be achieved by upgrading the existing residential building stock. Using a simple model of residential, single-family home …


Quantum Paradox Of Choice: More Freedom Makes Summoning A Quantum State Harder, Emily Adlam, Adrian Kent Jun 2016

Quantum Paradox Of Choice: More Freedom Makes Summoning A Quantum State Harder, Emily Adlam, Adrian Kent

Mathematics, Physics, and Computer Science Faculty Articles and Research

The properties of quantum information in space-time can be investigated by studying operational tasks, such as “summoning,” in which an unknown quantum state is supplied at one point and a call is made at another for it to be returned at a third. Hayden and May [arXiv:1210.0913] recently proved necessary and sufficient conditions for guaranteeing successful return of a summoned state for finite sets of call and return points when there is a guarantee of at most one summons. We prove necessary and sufficient conditions when there may be several possible summonses and complying with any one constitutes success, and …


Path Integral Study Of The Correlated Electronic States Of Na4–Na6, Randall W. Hall Jun 2016

Path Integral Study Of The Correlated Electronic States Of Na4–Na6, Randall W. Hall

Randall W. Hall

Feynman’s path integral formulation of quantum mechanics is used to study the correlated electronic states of Na4–Na6. Two types of simulations are performed: in the first, the nuclei are allowed to move at finite temperature in order to find the most stable geometries. In agreement with previous calculations, we find that planar structures are the most stable and that there is significant vibrational amplitude at finite temperatures, indicating that the Born–Oppenheimer surface is relatively flat. In the second type of simulation, the nuclei are held fixed at symmetric and asymmetric geometries and the correlated electron density is found. Our results …