Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Plasma and Beam Physics

2005

Electromagnetic cascading and generation of trains of few-cycle, relativistically intense pulses in plasmas

Articles 1 - 1 of 1

Full-Text Articles in Physics

Compression Of Laser Radiation In Plasmas Using Electromagnetic Cascading, Serguei Y. Kalmykov, Gennady Shvets Jun 2005

Compression Of Laser Radiation In Plasmas Using Electromagnetic Cascading, Serguei Y. Kalmykov, Gennady Shvets

Serge Youri Kalmykov

Compressing high-power laser beams in plasmas via generation of a coherent cascade of electromagnetic sidebands is described. The technique requires two copropagating beams detuned by a near-resonant frequency, \Omega < \omega_{p}. The ponderomotive force of the laser beat wave drives an electron plasma wave which modifies the refractive index of plasma so as to produce a periodic phase modulation of the laser field with the beat period t_b = 2\pi/\Omega. A train of chirped laser beat notes (each of duration t_b) is thus created. The group velocity dispersion of radiation in plasma can then compress each beat note to a few-laser-cycle duration. As a result, a train of sharp electromagnetic spikes separated in time by t_b is formed. Depending on the plasma and laser parameters, chirping and compression can be implemented either concurrently in the same plasma or sequentially in different plasmas.