Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Measurement Of Electron Density And Temperature From Laser-Induced Nitrogen Plasma At Elevated Pressure (1–6 Bar), Ashwin P. Rao [*], Mark Gragston, Anil K. Patnaik, Paul S. Hsu, Michael B. Shattan Nov 2019

Measurement Of Electron Density And Temperature From Laser-Induced Nitrogen Plasma At Elevated Pressure (1–6 Bar), Ashwin P. Rao [*], Mark Gragston, Anil K. Patnaik, Paul S. Hsu, Michael B. Shattan

Faculty Publications

Laser-induced plasmas experience Stark broadening and shifts of spectral lines carrying spectral signatures of plasma properties. In this paper, we report time-resolved Stark broadening measurements of a nitrogen triplet emission line at 1–6 bar ambient pressure in a pure nitrogen cell. Electron densities are calculated using the Stark broadening for different pressure conditions, which are shown to linearly increase with pressure. Additionally, using a Boltzmann fit for the triplet, the electron temperature is calculated and shown to decrease with increasing pressure. The rate of plasma cooling is observed to increase with pressure. The reported Stark broadening based plasma diagnostics in …


Argon Metastable And Resonant Level Densities In Ar And Ar/Cl² Discharges Used For The Processing Of Bulk Niobium, Jeremy Peshl, Roderick Mcneill, Charles I. Sukenik, Milka Nikolić, Svetozar Popović, Leposava Vŭsković Jan 2019

Argon Metastable And Resonant Level Densities In Ar And Ar/Cl² Discharges Used For The Processing Of Bulk Niobium, Jeremy Peshl, Roderick Mcneill, Charles I. Sukenik, Milka Nikolić, Svetozar Popović, Leposava Vŭsković

Physics Faculty Publications

A comparative analysis of two popular spectroscopy techniques is conducted in a coaxial cylindrical capacitively coupled discharge designed for the plasma processing of superconducting radio frequency (SRF) cavities. The density of the metastable and resonant levels in Ar is measured in both Ar and Ar/Cl2 discharges to properly characterize the unique discharge system and aid in the development of a cavity etching routine. The first method, deemed the “branching fraction method,” utilizes the sensitivity of photon reabsorption of radiative decay to measure the lower state (metastable and resonant) densities by taking ratios of spectral lines with a common upper …


Spatial Structure Of Ion Beams In An Expanding Plasma, Evan M. Aguirre, Earl E. Scime, Derek S. Thompson, Timothy N. Good Dec 2017

Spatial Structure Of Ion Beams In An Expanding Plasma, Evan M. Aguirre, Earl E. Scime, Derek S. Thompson, Timothy N. Good

Physics and Astronomy Faculty Publications

We report spatially resolved perpendicular and parallel, to the magnetic field, ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v ≈ 8000 m/s flowing downstream and confined to the center of the discharge. The ion beam is measurable for tens of centimeters along the expansion axis before the LIF signal fades, likely a result of metastable quenching of the beam ions. The parallel ion beam velocity slows in agreement with expectations for the measured parallel electric field. The perpendicular IVDFs show an …


Experimental Studies On The Plasma Bullet Propagation And Its Inhibition, Erdinc Karakas, Mounir Laroussi Jan 2010

Experimental Studies On The Plasma Bullet Propagation And Its Inhibition, Erdinc Karakas, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

Plasma bullets generated by atmospheric pressure low temperature plasma jets have recently been an active research topic due to their unique properties and their enhanced plasma chemistry. In this paper, experimental insights into the plasma bullet lifetime and its velocity are reported. Data obtained from intensified charge-coupled device camera and time-resolved optical emission spectroscopy (OES) elucidated the existence of a weakly ionized channel between the plasma bullet and its source (such as the plasma pencil). Factors responsible for the inhibition of the propagation of the bullet, such as low helium mole fraction, the magnitude of the applied voltage, and the …


Dynamics Of An Atmospheric Pressure Plasma Plume Generated By Submicrosecond Voltage Pulses, Xinpei Lu, Mounir Laroussi Jan 2006

Dynamics Of An Atmospheric Pressure Plasma Plume Generated By Submicrosecond Voltage Pulses, Xinpei Lu, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

Nonequilibrium plasmas driven by submicrosecond high voltage pulses have been proven to produce high-energy electrons, which in turn lead to enhanced ionization and excitations. Here, we describe a device capable of launching a cold plasma plume in the surrounding air. This device, "the plasma pencil," is driven by few hundred nanosecond wide pulses at repetition rates of a few kilohertz. Correlation between current-voltage characteristics and fast photography shows that the plasma plume is in fact a small bulletlike volume of plasma traveling at unusually high velocities. A model based on photoionization is used to explain the propagation kinetics of the …


X-Ray Generation From Metal Targets Coated With Wavelength-Scale Spheres, D. R. Symes, H. A. Sumeruk, I. V. Churina, Thomas D. Donnelly, J. Landry, T. Ditmire May 2005

X-Ray Generation From Metal Targets Coated With Wavelength-Scale Spheres, D. R. Symes, H. A. Sumeruk, I. V. Churina, Thomas D. Donnelly, J. Landry, T. Ditmire

All HMC Faculty Publications and Research

X-ray yield measurements from targets coated with wavelength-scale spheres are compared with measurements from polished targets. Evidence for a hotter resonant electron temperature due to field enhancements from Mie resonances in the spheres is investigated.


Electron Heating In Atmospheric Pressure Glow Discharges, Robert H. Stark, Karl H. Schoenbach Jan 2001

Electron Heating In Atmospheric Pressure Glow Discharges, Robert H. Stark, Karl H. Schoenbach

Bioelectrics Publications

The application of nanosecond voltage pulses to weakly ionized atmospheric pressure plasmas allows heating the electrons without considerably increasing the gas temperature, provided that the duration of the pulses is less than the critical time for the development of glow-to-arc transitions. The shift in the electron energy distribution towards higher energies causes a temporary increase in the ionization rate, and consequently a strong rise in electron density. This increase in electron density is reflected in an increased decay time of the plasma after the pulse application. Experiments in atmospheric pressure air glow discharges with gas temperatures of approximately 2000 K …


Measurement Of Magnetic Fluctuations By O-X Mode Conversion, L. L. Vahala, G. Vahala, N. Bretz Jan 1990

Measurement Of Magnetic Fluctuations By O-X Mode Conversion, L. L. Vahala, G. Vahala, N. Bretz

Electrical & Computer Engineering Faculty Publications

The possibility of measuring magnetic fluctuations in a fusion plasma is considered by examining the O→X mode conversion. Under certain conditions and with good angular resolution, this mode conversion can be attributed to the presence of magnetic fluctuations even though the level of these fluctuations is much lower than that of density fluctuations. Some nonideal effects such as mode polarization mismatch at the plasma edge are also discussed.