Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Plasma and Beam Physics

Series

Glow discharges

Articles 1 - 4 of 4

Full-Text Articles in Physics

20 Years Of Microplasma Research: A Status Report, Karl H. Schoenbach, Kurt Becker Jan 2016

20 Years Of Microplasma Research: A Status Report, Karl H. Schoenbach, Kurt Becker

Bioelectrics Publications

The field of microplasmas gained recognition as a well-defined area of research and application within the larger field of plasma science and technology about 20 years ago. Since then, the activity in microplasma research and applications has continuously increased. A survey of peer reviewed papers on microplasmas published annually shows a steady increase from fewer than 20 papers in 1995 to about 75 in 2005 and more than 150 in 2014. This count excludes papers that deal exclusively with technological applications where the microplasma is used solely as a tool. This topical review aims to provide a snap shot of …


Comparison Between Electropositive And Electronegative Cold Atmospheric-Pressure Plasmas: A Modelling Study, Ding X. Liu, Jia F. Li, Ai J. Yang, Xiao H. Wang, Ming Z. Rong, Michael G. Kong Jan 2016

Comparison Between Electropositive And Electronegative Cold Atmospheric-Pressure Plasmas: A Modelling Study, Ding X. Liu, Jia F. Li, Ai J. Yang, Xiao H. Wang, Ming Z. Rong, Michael G. Kong

Bioelectrics Publications

Cold atmospheric-pressure He + N2 and He + O2 plasmas are chosen as the representatives for electropositive and electronegative plasmas, of which the discharge characteristics are studied and then compared to each other by fluid models. As the increase of the impurity (N2 or O2) fraction from 0 to 10%, for He + N2 plasmas the electron density and ion density increase, the spatiotemporal distributions of electron density, ion density, electron temperature and electron generation rate change a little. On contrast, for He + O2 plasmas the electron density decreases, the ion density …


Electron Heating In Atmospheric Pressure Glow Discharges, Robert H. Stark, Karl H. Schoenbach Jan 2001

Electron Heating In Atmospheric Pressure Glow Discharges, Robert H. Stark, Karl H. Schoenbach

Bioelectrics Publications

The application of nanosecond voltage pulses to weakly ionized atmospheric pressure plasmas allows heating the electrons without considerably increasing the gas temperature, provided that the duration of the pulses is less than the critical time for the development of glow-to-arc transitions. The shift in the electron energy distribution towards higher energies causes a temporary increase in the ionization rate, and consequently a strong rise in electron density. This increase in electron density is reflected in an increased decay time of the plasma after the pulse application. Experiments in atmospheric pressure air glow discharges with gas temperatures of approximately 2000 K …


Inception Of Snapover And Gas Induced Glow Discharges, J. T. Galofaro, B. V. Vayner, D. C. Ferguson, W. A. Degroot, C. D. Thomson, John R. Dennison, R. E. Davies Jan 2000

Inception Of Snapover And Gas Induced Glow Discharges, J. T. Galofaro, B. V. Vayner, D. C. Ferguson, W. A. Degroot, C. D. Thomson, John R. Dennison, R. E. Davies

All Physics Faculty Publications

Ground based experiments of the snapover phenomenon were conducted in the large vertical simulation chamber at the Glenn Research Center (GRC) Plasma Interaction Facility (PIF). Two Penning sources provided both argon and xenon plasmas for the experiments. The sources were used to simulate a variety of ionospheric densities pertaining to a spacecraft in a Low Earth Orbital (LEO) environment. Secondary electron emission is believed responsible for dielectric surface charging, and all subsequent snapover phenomena observed. Voltage sweeps of conductor potentials versus collected current were recorded in order to examine the specific charging history of each sample. The average time constant …