Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Plasma and Beam Physics

Air Force Institute of Technology

High power lasers

Articles 1 - 6 of 6

Full-Text Articles in Physics

Numerical Simulation Of Steady-State Thermal Blooming With Natural Convection, Jeremiah S. Lane, Justin Cook, Martin Richardson, Benjamin F. Akers Mar 2023

Numerical Simulation Of Steady-State Thermal Blooming With Natural Convection, Jeremiah S. Lane, Justin Cook, Martin Richardson, Benjamin F. Akers

Faculty Publications

This work investigates steady-state thermal blooming of a high-energy laser in the presence of laser-driven convection. While thermal blooming has historically been simulated with prescribed fluid velocities, the model introduced here solves for the fluid dynamics along the propagation path using a Boussinesq approximation to the incompressible Navier–Stokes equations. The resultant temperature fluctuations were coupled to refractive index fluctuations, and the beam propagation was modeled using the paraxial wave equation. Fixed-point methods were used to solve the fluid equations as well as to couple the beam propagation to the steady-state flow. The simulated results are discussed relative to recent experimental …


Radial Distribution Of Absorption In A Cesium Heat Pipe With Axial Laser Heating, Charles D. Fox Mar 2011

Radial Distribution Of Absorption In A Cesium Heat Pipe With Axial Laser Heating, Charles D. Fox

Theses and Dissertations

Diode Pumped Alkali Lasers (DPAL) have been scaled to greater than 100 W and exhibit slope efficiencies exceeding 80%, offering application for tactical laser weapons. The hybrid DPAL system combines efficient diode pumping with the good beam quality and thermal characteristics of gas lasers. Thermal effects on alkali concentration have been observed to degrade performance, while low speed flowing systems are in development. However, spatial gradients in temperature and concentrations have not previously been observed. In the present work, a 0.8 W/cm2 pump laser at the D1 frequency heats the medium in a T=50-100 °C cesium heat pipe …


Mission Analysis And Design For Space Based Inter-Satellite Laser Power Beaming, Nicholas M. Keller Mar 2010

Mission Analysis And Design For Space Based Inter-Satellite Laser Power Beaming, Nicholas M. Keller

Theses and Dissertations

This research effort develops an interdisciplinary design tool to optimize an orbit for the purpose of wirelessly beaming power from the International Space Stations (ISS) Japanese Experimental Module Exposed Facility (JEM/EF) to a target satellite. For the purpose of this initiative, the target satellite will be referred to as FalconSAT6, a reference to the proposed follow-on satellite to the U.S. Air Force Academy’s (USAFA) FalconSAT5 program. The USAFA FalconSAT program provides cadets an opportunity to design, analyze, build, test and operate small satellites to conduct Department of Defense (DoD) space missions. The tool developed for this research is designed to …


Assessment Of Weather Sensitivities And Air Force Weather (Afw) Support To Tactical Lasers In The Lower Troposphere, Francesco J. Echeverria Mar 2009

Assessment Of Weather Sensitivities And Air Force Weather (Afw) Support To Tactical Lasers In The Lower Troposphere, Francesco J. Echeverria

Theses and Dissertations

ATL scientists need to develop a full understanding of the interaction effects between a high-energy laser beam and the atmosphere through which it propagates. Achieving this understanding is important for many reasons. In particular, the high cost of DE weapons systems makes each propagation event expensive. Having an understanding of the atmosphere in which a high-energy laser propagates will increase efficiency and effectiveness of the ATL weapon system, which in turn will decrease cost of operation. A tool that allows for the ATL war-fighter to determine the atmospheric effects on laser propagation currently does not exist. This study creates a …


The Simulation Of Off-Axis Laser Propagation Using Heleeos, Scott L. Belton Mar 2006

The Simulation Of Off-Axis Laser Propagation Using Heleeos, Scott L. Belton

Theses and Dissertations

Emerging technology high energy laser (HEL) weapon systems create a myriad of new threats to safety as well as security. One of the primary causes of these concerns is off-axis laser propagation caused by ever-present particulate and molecular scattering medium in the atmosphere. The scatter from these aerosols and molecules can redirect some of the HEL's concentrated energy towards unintended targets such as the eyes of pilots, friendly fighters on the surface, or innocent bystanders. Of particular interest to the laser intelligence (LASINT) community is the possibility that off-axis irradiance from HEL weapon systems could be covertly measured with enough …


Laser Intensity Scaling Through Stimulated Scattering In Optical Fibers, Timothy H. Russell Dec 2001

Laser Intensity Scaling Through Stimulated Scattering In Optical Fibers, Timothy H. Russell

Theses and Dissertations

The influence of stimulated scattering on laser intensity in fiber optic waveguides is examined. Stimulated Brillouin scattering (SBS) in long, multimode optical waveguides is found to generate a Stokes beam that propagates in the fiber LP01 mode. Additionally, the same process is found to combine multiple laser beams into a single spatially coherent source. Limitations in beam cleanup and combining are also investigated to identify ways to overcome them. The last portion of the dissertation theoretically examines suppression of stimulated Raman scattering in fibers to eliminate the restriction this imposes on the power of a fiber laser or amplifier. The …