Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Resonant Enhancement Of Relativistic Electron Fluxes During Geomagnetically Active Periods, I Roth, M Temerin, M K. Hudson Oct 1999

Resonant Enhancement Of Relativistic Electron Fluxes During Geomagnetically Active Periods, I Roth, M Temerin, M K. Hudson

Dartmouth Scholarship

The strong increase in the ̄ux of relativistic electrons during the recovery phase of magnetic storms and during other active periods is investigated with the help of Hamiltonian formalism and simulations of test electrons which interact with whistler waves. The intensity of the whistler waves is enhanced signi®cantly due to injection of 10±100 keV electrons during the substorm. Electrons which drift in the gradient and curvature of the magnetic ®eld generate the rising tones of VLF whistler chorus. The seed population of relativ- istic electrons which bounce along the inhomogeneous magnetic ®eld, interacts resonantly with the whistler waves. Whistler wave …


Temperature Dependence Of Stark Width Of The 463.054 Nm Nii Spectral Line, Vladimir Milosavljevic, Ruzica Konjevic, Stevan Djenize Mar 1999

Temperature Dependence Of Stark Width Of The 463.054 Nm Nii Spectral Line, Vladimir Milosavljevic, Ruzica Konjevic, Stevan Djenize

Articles

Stark width of the 463.054 nm singly ionized nitrogen spectral line, that belong to transition, have been measured in a linear pulsed, low pressure, arc discharge. The working gas was helium-nitrogen-oxygen mixture. Electron densities of 0.751023 to 1.451023 were determined in the electron temperature range between 30000 K - 38000 K. The measured values have been compared with our calculated data, using the modified semiempirical approximation. On the basis of the agreement among experimental and theoretical Stark width data, the isolated 463.054 nm NII spectral line can be recommended as convenient spectral line for plasma diagnostics.


Direct Current Glow Discharges In Atmospheric Air, Robert H. Stark, Karl H. Schoenbach Jan 1999

Direct Current Glow Discharges In Atmospheric Air, Robert H. Stark, Karl H. Schoenbach

Bioelectrics Publications

Direct current glow discharges have been operated in atmospheric air by using 100 μm microhollow cathode discharges as plasma cathodes. The glow discharges were operated at currents of up to 22 mA, corresponding to current densities of 3.8 A/cm2 and at average electric fields of 1.2 kV/cm. Electron densities in the glow are in the range from 1012 to 1013  cm−3. Varying the current of the microhollow cathode discharge allows us to control the current in the atmospheric pressure glow discharge. Large volume atmospheric pressure air plasmas can be generated by operating microhollow cathode discharges …