Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Physics

More On The Demons Of Thermodynamics, Daniel P. Sheehan, Garret Moddel, James W. Lee Jan 2023

More On The Demons Of Thermodynamics, Daniel P. Sheehan, Garret Moddel, James W. Lee

Chemistry & Biochemistry Faculty Publications

No abstract provided.


Environmental Modifications Of Atomic Properties: The Ground And 1s2p Excited States Of Compressed Helium, N. C. Pyper, T. C. Naginey, Colm T. Whelan Jan 2021

Environmental Modifications Of Atomic Properties: The Ground And 1s2p Excited States Of Compressed Helium, N. C. Pyper, T. C. Naginey, Colm T. Whelan

Physics Faculty Publications

Atoms remaining as recognizably distinct constituents of bulk condensed phases can have properties modified from those of the isolated species. Dense helium bubbles at high pressures are a common form of radiation damage degrading the mechanical and electrical properties of host materials. Detailed knowledge is critical for predicting their long term performance. Modifications of the ground and first singlet excited states of confined compressed helium are investigated using an entirely non-empirical theory based on the results of ab initio self-consistent field calculations with corrections for the effects of electron correlation. For finite sized portions representing bulk condensed fcc and bcc …


Recent Developments In The Pyscf Program Package, Qiming Sun, Xing Zhang, Samragni Banerjee, Peng Bao, Marc Barbry, Nick S. Blunt, Nikolay A. Bogdanov, George H. Booth, Jia Chen, Zhi-Hao Cui, Janus J. Eriksen, Yang Gao, Sheng Gun, Jan Hermann, Matthew R. Hermes, Kevin Koh, Peter Koval, Susi Lehtola, Zhendong Li, Junzi Liu, Narbe Mardirossian, James D. Mcclain, Mario Motta, Bastien Mussard, Hung Q. Pham, Artem Pulkin, Wirawan Purwanto, Paul J. Robinson, Enrico Ronca, Elvira R. Sayfutyarova, Maximillian Scheurer, Henry F. Schurkus, James E.T. Smith, Chong Sun, Shi-Ning Sun, Shiv Upadhyay, Lucas K. Wagner, Xiao Wang, Alec White, James Daniel Whitfield, Mark J. Williamson, Sebastian Wouters, Jun Yang, Jason M. Yu, Tianyu Zhu, Timothy C. Berkelbach, Sandeep Sharma, Alexander Yu Sokolov, Garnet Kin-Lic Chan Jan 2020

Recent Developments In The Pyscf Program Package, Qiming Sun, Xing Zhang, Samragni Banerjee, Peng Bao, Marc Barbry, Nick S. Blunt, Nikolay A. Bogdanov, George H. Booth, Jia Chen, Zhi-Hao Cui, Janus J. Eriksen, Yang Gao, Sheng Gun, Jan Hermann, Matthew R. Hermes, Kevin Koh, Peter Koval, Susi Lehtola, Zhendong Li, Junzi Liu, Narbe Mardirossian, James D. Mcclain, Mario Motta, Bastien Mussard, Hung Q. Pham, Artem Pulkin, Wirawan Purwanto, Paul J. Robinson, Enrico Ronca, Elvira R. Sayfutyarova, Maximillian Scheurer, Henry F. Schurkus, James E.T. Smith, Chong Sun, Shi-Ning Sun, Shiv Upadhyay, Lucas K. Wagner, Xiao Wang, Alec White, James Daniel Whitfield, Mark J. Williamson, Sebastian Wouters, Jun Yang, Jason M. Yu, Tianyu Zhu, Timothy C. Berkelbach, Sandeep Sharma, Alexander Yu Sokolov, Garnet Kin-Lic Chan

University Administration Publications

PySCF is a Python-based general-purpose electronic structure platform that supports first-principles simulations of molecules and solids as well as accelerates the development of new methodology and complex computational workflows. This paper explains the design and philosophy behind PySCF that enables it to meet these twin objectives. With several case studies, we show how users can easily implement their own methods using PySCF as a development environment. We then summarize the capabilities of PySCF for molecular and solid-state simulations. Finally, we describe the growing ecosystem of projects that use PySCF across the domains of quantum chemistry, materials science, machine learning, and …


Study Of Infrared Emission Spectroscopy For The B 1Δg- A 1Πu And B ′1Σg +- A 1Πu Systems Of C2, Wang Chen, Kentarou Kawaguchi, Peter F. Bernath, Jian Tang Feb 2016

Study Of Infrared Emission Spectroscopy For The B 1Δg- A 1Πu And B ′1Σg +- A 1Πu Systems Of C2, Wang Chen, Kentarou Kawaguchi, Peter F. Bernath, Jian Tang

Chemistry & Biochemistry Faculty Publications

Thirteen bands for the B1Δg-A1Πu system and eleven bands for the B′1Σg +-A1Πu system of C2 were identified in the Fourier transform infrared emission spectra of hydrocarbon discharges. The B′1Σg + v = 4 and the B1Δg v = 6, 7, and 8 vibrational levels involved in nine bands were studied for the first time. A direct global analysis with Dunham parameters was carried out satisfactorily for the B1Δg-A1Πu system except for a …


Energy-Efficient Computational Chemistry: Comparison Of X86 And Arm Systems, Kristopher Keipert, Gaurav Mitra, Vaibhav Sunriyal, Sarom S. Leang, Masha Sosonkina, Alistair P. Rendell, Mark S. Gordon Nov 2015

Energy-Efficient Computational Chemistry: Comparison Of X86 And Arm Systems, Kristopher Keipert, Gaurav Mitra, Vaibhav Sunriyal, Sarom S. Leang, Masha Sosonkina, Alistair P. Rendell, Mark S. Gordon

Computational Modeling & Simulation Engineering Faculty Publications

The computational efficiency and energy-to-solution of several applications using the GAMESS quantum chemistry suite of codes is evaluated for 32-bit and 64-bit ARM-based computers, and compared to an x86 machine. The x86 system completes all benchmark computations more quickly than either ARM system and is the best choice to minimize time to solution. The ARM64 and ARM32 computational performances are similar to each other for Hartree-Fock and density functional theory energy calculations. However, for memory-intensive second-order perturbation theory energy and gradient computations the lower ARM32 read/write memory bandwidth results in computation times as much as 86% longer than on the …


Simultaneous Analysis Of The Ballik-Ramsay And Phillips Systems Of C2 And Observation Of Forbidden Transitions Between Singlet And Triplet States, Wang Chen, Kentarou Kawaguchi, Peter F. Bernath, Jian Tang Feb 2015

Simultaneous Analysis Of The Ballik-Ramsay And Phillips Systems Of C2 And Observation Of Forbidden Transitions Between Singlet And Triplet States, Wang Chen, Kentarou Kawaguchi, Peter F. Bernath, Jian Tang

Chemistry & Biochemistry Faculty Publications

6229 lines of the Ballik-Ramsay system (b3Σg--a3Πu) and the Phillips system (A1Πu-X1Σg+) of C2 up to v = 8 and J = 76, which were taken from the literature or assigned in the present work, were analyzed simultaneously by least-squares fitting with 82 Dunham-like molecular parameters and spin-orbit interaction constants between the b3Σg- and X1Σg+ states with a standard deviation of 0.0037 cm-1 for the whole data set. As a …


Note: Improved Line Strengths Of Rovibrational And Rotational Transitions Within The X3Σ⁻ Ground State Of Nh, James S.A. Brooke, Peter F. Bernath, Colin M. Western Jan 2015

Note: Improved Line Strengths Of Rovibrational And Rotational Transitions Within The X3Σ⁻ Ground State Of Nh, James S.A. Brooke, Peter F. Bernath, Colin M. Western

Chemistry & Biochemistry Faculty Publications

Recently, a line list including positions and transition strengths was published for the NH X3Σ rovibrational and rotational transitions. The calculation of the transition strengths requires a conversion of transition matrix elements from Hund’s case (b) to (a). The method of this conversion has recently been improved during other work on the OH X2Π rovibrational transitions, by removing an approximation that was present previously. The adjusted method has been applied to the NH line list, resulting in more accurate transition strengths. An updated line list is presented that contains all possible transitions with v′ and …


Beam-Energy Dependence Of Charge Separation Along The Magnetic Field In Au + Au Collisions At Rhic, L. Adamczyk, J. K. Adkins, G. Agakishiev, M. M. Aggarwal, Z. Ahammed, I. Alekseev, J. Alford, C. D. Anson, A. Aparin, D. Arkhipkin, E. C. Aschenauer, G. S. Averichev, A. Banerjee, D. R. Beavis, R. Bellwied, A. Bhasin, A. K. Bhati, P. Bhattarai, H. Bichsel, M. Zyzak, Et Al., Star Collaboration Jan 2014

Beam-Energy Dependence Of Charge Separation Along The Magnetic Field In Au + Au Collisions At Rhic, L. Adamczyk, J. K. Adkins, G. Agakishiev, M. M. Aggarwal, Z. Ahammed, I. Alekseev, J. Alford, C. D. Anson, A. Aparin, D. Arkhipkin, E. C. Aschenauer, G. S. Averichev, A. Banerjee, D. R. Beavis, R. Bellwied, A. Bhasin, A. K. Bhati, P. Bhattarai, H. Bichsel, M. Zyzak, Et Al., Star Collaboration

Physics Faculty Publications

Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with …


Nonuniformity In Lattice Contraction Of Bismuth Nanoclusters Heated Near Its Melting Point, A. Esmail, M. Abdel-Fattah, Hani E. Elsayed-Ali Jan 2011

Nonuniformity In Lattice Contraction Of Bismuth Nanoclusters Heated Near Its Melting Point, A. Esmail, M. Abdel-Fattah, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The structural properties of bismuth nanoclusters were investigated with transmission high-energy electron diffraction from room temperature up to 525 ± 6 K. The Bi nanoclusters were fabricated by thermal evaporation at room temperature on transmission electron microscope grids coated with an ultrathin carbon film, followed by thermal and femtosecond laser annealing. The annealed sample had an average cluster size of ∼14 nm along the minor axis and ∼16 nm along the major axis. The Debye temperature of the annealed nanoclusters was found to be 53 ± 6 K along the [012] direction and 86 ± 9 K along the [110] …


Precise Control Of Highly Ordered Arrays Of Nested Semiconductor/Metal Nanotubes, Diefeng Gu, Helmut Baumgart, Kandabara Tapily, Pragya Shrestha, Gon Namkoong, Xianyu Ao, Frank Müller Jan 2011

Precise Control Of Highly Ordered Arrays Of Nested Semiconductor/Metal Nanotubes, Diefeng Gu, Helmut Baumgart, Kandabara Tapily, Pragya Shrestha, Gon Namkoong, Xianyu Ao, Frank Müller

Electrical & Computer Engineering Faculty Publications

Lithographically defined microporous templates in conjunction with the atomic layer deposition (ALD) technique enable remarkable control of complex novel nested nanotube structures. So far three-dimensional control of physical process parameters has not been fully realized with high precision resolution, and requires optimization in order to achieve a wider range of potential applications. Furthermore, the combination of composite insulating oxide layers alternating with semiconducting layers and metals can provide various types of novel applications and eventually provide unique and advanced levels of multifunctional nanoscale devices. Semiconducting TiO2 nanotubes have potential applications in photovoltaic devices. The combination of nanostructured semiconducting materials …


Activation Energy Of Surface Diffusion And Terrace Width Dynamics During The Growth Of In (4×3) On Si (100) - (2×1) By Femtosecond Pulsed Laser Deposition, M. A. Hafez, H. E. Elsayed-Ali Jan 2008

Activation Energy Of Surface Diffusion And Terrace Width Dynamics During The Growth Of In (4×3) On Si (100) - (2×1) By Femtosecond Pulsed Laser Deposition, M. A. Hafez, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The nucleation and growth of indium on a vicinal Si (100) - (2×1) surface at high temperature by femtosecond pulsed laser deposition was investigated by in situ reflection high energy electron diffraction (RHEED). RHEED intensity relaxation was observed for the first ∼2 ML during the growth of In (4×3) by step flow. From the temperature dependence of the rate of relaxation, an activation energy of 1.4±0.2 eV of surface diffusion was determined. The results indicate that indium small clusters diffused to terrace step edges with a diffusion frequency constant of (1.0±0.1) × 1011 s-1. The RHEED specular …


Formation Of In- (2×1) And In Islands On Si (100) - (2×1) By Femtosecond Pulsed Laser Deposition, M. A. Hafez, H. E. Elsayed-Ali Jan 2007

Formation Of In- (2×1) And In Islands On Si (100) - (2×1) By Femtosecond Pulsed Laser Deposition, M. A. Hafez, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The growth of indium on a vicinal Si (100) - (2×1) surface at room temperature by femtosecond pulsed laser deposition (fsPLD) was investigated by in situ reflection high-energy electron diffraction (RHEED). Recovery of the RHEED intensity was observed between laser pulses and when the growth was terminated. The surface diffusion coefficient of deposited In on initial two-dimensional (2D) In- (2×1) layer was determined. As growth proceeds, three-dimensional In islands grew on the 2D In- (2×1) layer. The RHEED specular profile was analyzed during film growth, while the grown In islands were examined by ex situ atomic force microscopy. The full …


Growth Of Ge Quantum Dots On Si(100)-(2×1) By Pulsed Laser Deposition, M. S. Hegazy, H. E. Elsayed-Ali Jan 2006

Growth Of Ge Quantum Dots On Si(100)-(2×1) By Pulsed Laser Deposition, M. S. Hegazy, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Self-assembled germanium quantum dots (QDs) were grown on Si(100)-(2×1) by pulsed laser deposition. In situ reflection-high energy electron diffraction (RHEED) and postdeposition atomic force microscopy are used to study the growth of the QDs. Several films of different thicknesses were grown at a substrate temperature of 400 °C using a Q-switched Nd:yttrium aluminum garnet laser (λ= 1064 nm, 40 ns pulse width, 23 J/cm 2 fluence, and 10 Hz repetition rate). At low film thicknesses, hut clusters that are faceted by different planes, depending on their height, are observed after the completion of the wetting layer. With increasing film thickness, …


Predicted Properties Of Microhollow Cathode Discharges In Xenon, J. P. Boeuf, L. C. Pitchford, K. H. Schoenbach Jan 2005

Predicted Properties Of Microhollow Cathode Discharges In Xenon, J. P. Boeuf, L. C. Pitchford, K. H. Schoenbach

Bioelectrics Publications

A fluid model has been developed and used to help clarify the physical mechanisms occurring in microhollow cathode discharges (MHCD). Calculated current-voltage (I-V) characteristics and gas temperatures in xenon at 100 Torr are presented. Consistent with previous experimental results in similar conditions, we find a voltage maximum in the I-V characteristic. We show that this structure reflects a transition between a low-current, abnormal discharge localized inside the cylindrical hollow cathode to a higher-current, normal glow discharge sustained by electron emission from the outer surface of the cathode. This transition, due to the geometry of …


Comparison Between The Ultraviolet Emission From Pulsed Microhollow Cathode Discharges In Xenon And Argon, Isfried Petzenhauser, Leopold D. Biborosch, Uwe Ernst, Klaus Frank, Karl H. Schoenbach Jan 2003

Comparison Between The Ultraviolet Emission From Pulsed Microhollow Cathode Discharges In Xenon And Argon, Isfried Petzenhauser, Leopold D. Biborosch, Uwe Ernst, Klaus Frank, Karl H. Schoenbach

Bioelectrics Publications

We measured the dynamic I–V characteristics and vacuum ultraviolet (VUV) emission lines of the second continuum in xenon (170 nm) and argon (130.5 nm) from pulsed microhollow cathode discharges (MHCD). For pulse lengths between 1 and 100 μs the dynamic I–V characteristics are similar in both inert gases. Only the time variation of the VUV emission line at 170 nm for xenon can be related to the dimer excited states. In argon the energy transfer between the Ar*2 dimers and the oxygen impurity atoms is responsible for a qualitatively different time behavior of the resonance line at 130.5 nm. …


Absolute-Convective Instabilities And Their Associated Wave Packets In A Compressible Reacting Mixing Layer, F. Q. Hu, T. L. Jackson, D. G. Lasseigne, C. E. Grosch Jan 1993

Absolute-Convective Instabilities And Their Associated Wave Packets In A Compressible Reacting Mixing Layer, F. Q. Hu, T. L. Jackson, D. G. Lasseigne, C. E. Grosch

Mathematics & Statistics Faculty Publications

In this paper the transition from convective to absolute instability in a reacting compressible mixing layer with finite rate chemistry is examined. The reaction is assumed to be one step, irreversible, and of Arrhenius type. It is shown that absolute instability can exist for moderate heat release without backflow. The effects of the temperature ratio, heat release parameter, Zeldovich number, equivalence ratio, direction of propagation of the disturbances, and the Mach number on the transition value of the velocity ratio are given. The present results are compared to those obtained from the flame sheet model for the temperature using the …


Nonadiabatic Theory Of Fine-Structure Branching Cross Sections For Na-He, Na-Ne, And Na-Ar Optical Collisions, Linda L. Vahala, P. S. Julienne, Mark D. Havey Jan 1986

Nonadiabatic Theory Of Fine-Structure Branching Cross Sections For Na-He, Na-Ne, And Na-Ar Optical Collisions, Linda L. Vahala, P. S. Julienne, Mark D. Havey

Electrical & Computer Engineering Faculty Publications

The nonadiabatic close-coupled theory of atomic collisions in a radiation field is generalized to include electron spin and is used to consider the weak-field Narare-gas (RG) optical collision Na(2S1/2)+RG+nhν μNa(2Pj)+RG+(n-1). The effects of detuning and incident energy on the branching into the atomic Na 3p2P3/2 and 3p2P1/2 states are examined. The cross sections σ(j) are found to have a strong asymmetry between red and blue detuning as well as a complex threshold and resonance structure dependence on energy. A partial cross-section analysis …