Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Fractional Order Thermoelastic Deflection In A Thin Circular Plate, J. J. Tripathi, S. D. Warbhe, K. C. Deshmukh, J. Verma Dec 2017

Fractional Order Thermoelastic Deflection In A Thin Circular Plate, J. J. Tripathi, S. D. Warbhe, K. C. Deshmukh, J. Verma

Applications and Applied Mathematics: An International Journal (AAM)

In this work, a quasi-static uncoupled theory of thermoelasticity based on time fractional heat conduction equation is used to model a thin circular plate, whose lower surface is maintained at zero temperature whereas the upper surface is insulated. The edge of the circular plate is fixed and clamped. Integral transform technique is used to derive the analytical solutions in the physi-cal domain. The numerical results for temperature distributions and thermal deflection are com-puted and represented graphically for Copper material.


Effect Of Nonlinear Thermal Radiation On Mhd Chemically Reacting Maxwell Fluid Flow Past A Linearly Stretching Sheet, A. M. Ramireddy, J. V. Ramana Reddy, N. Sandeep, V. Sugunamma Jun 2017

Effect Of Nonlinear Thermal Radiation On Mhd Chemically Reacting Maxwell Fluid Flow Past A Linearly Stretching Sheet, A. M. Ramireddy, J. V. Ramana Reddy, N. Sandeep, V. Sugunamma

Applications and Applied Mathematics: An International Journal (AAM)

This communication addresses the influence of nonlinear thermal radiation on magneto hydrodynamic Maxwell fluid flow past a linearly stretching surface with heat and mass transfer. The effects of heat generation/absorption and chemical reaction are taken into account. At first, we converted the governing partial differential equations into nonlinear ordinary differential equations with the help of suitable similarity transformations and solved by using Runge-Kutta based shooting technique. Further, the effects of various physical parameters on velocity, temperature and concentration fields were discussed thoroughly with the help of graphs obtained by using bvp5c MATLAB package. In view of many engineering applications we …


New Structure For Exact Solutions Of Nonlinear Time Fractional Sharma-Tasso-Olver Equation Via Conformable Fractional Derivative, Hadi Rezazadeh, Farid S. Khodadad, Jalil Manafian Jun 2017

New Structure For Exact Solutions Of Nonlinear Time Fractional Sharma-Tasso-Olver Equation Via Conformable Fractional Derivative, Hadi Rezazadeh, Farid S. Khodadad, Jalil Manafian

Applications and Applied Mathematics: An International Journal (AAM)

In this paper new fractional derivative and direct algebraic method are used to construct exact solutions of the nonlinear time fractional Sharma-Tasso-Olver equation. As a result, three families of exact analytical solutions are obtained. The results reveal that the proposed method is very effective and simple for obtaining approximate solutions of nonlinear fractional partial differential equations.


Asymptotic Behavior Of Waves In A Nonuniform Medium, Nezam Iraniparast, Lan Nguyen, Mikhail Khenner Jun 2017

Asymptotic Behavior Of Waves In A Nonuniform Medium, Nezam Iraniparast, Lan Nguyen, Mikhail Khenner

Applications and Applied Mathematics: An International Journal (AAM)

An incoming wave on an infinite string, that has uniform density except for one or two jump discontinuities, splits into transmitted and reflected waves. These waves can explicitly be described in terms of the incoming wave with changes in the amplitude and speed. But when a string or membrane has continuous inhomogeneity in a finite region the waves can only be approximated or described asymptotically. Here, we study the cases of monochromatic waves along a nonuniform density string and plane waves along a membrane with nonuniform density. In both cases the speed of the physical system is assumed to tend …