Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 39

Full-Text Articles in Physics

(R1480) Heat Transfer In Peristaltic Motion Of Rabinowitsch Fluid In A Channel With Permeable Wall, Mahadev M. Channakote, Dilipkumar V. Kalse Dec 2021

(R1480) Heat Transfer In Peristaltic Motion Of Rabinowitsch Fluid In A Channel With Permeable Wall, Mahadev M. Channakote, Dilipkumar V. Kalse

Applications and Applied Mathematics: An International Journal (AAM)

This paper is intended to investigate the effect of heat transfer on the peristaltic flow of Rabinowitsch fluid in a channel lined with a porous material. The Navier -Stokes equation governs the channel's flow, and Darcy's law describes the permeable boundary. The Rabinowitsch fluid model's governing equations are solved by utilizing approximations of the long-wavelength and small number of Reynolds. The expressions for axial velocity, temperature distribution, pressure gradient, friction force, stream function are obtained. The influence on velocity, pressure gradient, friction force, and temperature on pumping action of different physical parameters is explored via graphs.


Exact Solutions Of Two Nonlinear Space-Time Fractional Differential Equations By Application Of Exp-Function Method, Elahe M. Eskandari, Nasir Taghizadeh Dec 2020

Exact Solutions Of Two Nonlinear Space-Time Fractional Differential Equations By Application Of Exp-Function Method, Elahe M. Eskandari, Nasir Taghizadeh

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we discuss on the exact solutions of the nonlinear space-time fractional Burgerlike equation and also the nonlinear fractional fifth-order Sawada-Kotera equation with the expfunction method.We use the functional derivatives in the sense of Riemann-Jumarie derivative and fractional convenient variable transformation in this study. Further, we obtain some exact analytical solutions including hyperbolic function.


Accurate Spectral Algorithms For Solving Variable-Order Fractional Percolation Equations, M. A. Abdelkawy Dec 2020

Accurate Spectral Algorithms For Solving Variable-Order Fractional Percolation Equations, M. A. Abdelkawy

Applications and Applied Mathematics: An International Journal (AAM)

A high accurate spectral algorithm for one-dimensional variable-order fractional percolation equations (VO-FPEs) is considered.We propose a shifted Legendre Gauss-Lobatto collocation (SL-GLC) method in conjunction with shifted Chebyshev Gauss-Radau collocation (SC-GR-C) method to solve the proposed problem. Firstly, the solution and its space fractional derivatives are expanded as shifted Legendre polynomials series. Then, we determine the expansion coefficients by reducing the VO-FPEs and its conditions to a system of ordinary differential equations (SODEs) in time. The numerical approximation of SODEs is achieved by means of the SC-GR-C method. The under-study’s problem subjected to the Dirichlet or non-local boundary conditions is presented …


Explicit Formulas For Solutions Of Maxwell’S Equations In Conducting Media, Valery Yakhno Dec 2020

Explicit Formulas For Solutions Of Maxwell’S Equations In Conducting Media, Valery Yakhno

Applications and Applied Mathematics: An International Journal (AAM)

A new explicit presentation of the fundamental solution of the time-dependent Maxwell’s equations in conducting isotropic media is derived by Hadamard techniques through the fundamental solution of the telegraph operator. This presentation is used to obtain explicit formulas for generalized solutions of the initial value problem for Maxwell’s equations. A new explicit Kirchhoff’s formula for the classical solution of the initial value problem for the Maxwell equations in conducting media is derived. The obtained explicit formulas can be used in the boundary integral method, Green’s functions method and for computation of electric and magnetic fields in conducting media and materials.


Local Non-Similar Solution Of Powell-Eyring Fluid Flow Over A Vertical Flat Plate, Hemangini Shukla, Hema C. Surati, M. G. Timol Dec 2019

Local Non-Similar Solution Of Powell-Eyring Fluid Flow Over A Vertical Flat Plate, Hemangini Shukla, Hema C. Surati, M. G. Timol

Applications and Applied Mathematics: An International Journal (AAM)

Our objective is to obtain the non-similarity solution of non-Newtonian fluid for Powell-Eyring model by a local non-similarity method. Here, free stream velocity is considered in power-law form (𝑈=𝑥m). The governing equations are transformed using non-similar transformations and derived equations are treated as ordinary differential equations. Non-similar solutions are obtained for different values of power-law index 𝑚 and stream-wise location 𝜉. Influence of various parameters on velocity and temperature field are presented graphically using MATLAB bvp4c solver.


Application Of Reduced Differential Transform Method For Solving Two-Dimensional Volterra Integral Equations Of The Second Kind, Seyyedeh R. Moosavi Noori, Nasir Taghizadeh Dec 2019

Application Of Reduced Differential Transform Method For Solving Two-Dimensional Volterra Integral Equations Of The Second Kind, Seyyedeh R. Moosavi Noori, Nasir Taghizadeh

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we propose new theorems of the reduced differential transform method (RDTM) for solving a class of two-dimensional linear and nonlinear Volterra integral equations (VIEs) of the second kind. The advantage of this method is its simplicity in using. It solves the equations straightforward and directly without using perturbation, Adomian’s polynomial, linearization or any other transformation and gives the solution as convergent power series with simply determinable components. Also, six examples and numerical results are provided so as to validate the reliability and efficiency of the method.


Two Dimensional Mathematical Study Of Flow Dynamics Through Emphysemic Lung, Jyoti Kori, Pratibha _ Jun 2019

Two Dimensional Mathematical Study Of Flow Dynamics Through Emphysemic Lung, Jyoti Kori, Pratibha _

Applications and Applied Mathematics: An International Journal (AAM)

There are various lung diseases, such as chronic obstructive pulmonary disease, asthma, fibrosis, emphysema etc., occurred due to deposition of different shape and size particles. Among them we focused on flow dynamics of viscous air through an emphysemic lung. We considered lung as a porous medium and porosity is a function of tidal volume. Two dimensional generalized equation of momentum is used to study the flow of air and equation of motion is used to study the flow of nanoparticles of elongated shape. Darcy term for flow in porous media and shape factor for nonspherical nanoparticles are used in mathematical …


Comparative Analysis On Angular Flow And Mass Transfer In Haemodialysis, J. K. Misra, Pradeep K. Singh, Naseem Ahmad, Pankaj Sharma Jun 2019

Comparative Analysis On Angular Flow And Mass Transfer In Haemodialysis, J. K. Misra, Pradeep K. Singh, Naseem Ahmad, Pankaj Sharma

Applications and Applied Mathematics: An International Journal (AAM)

Healthy kidney cleans blood and removes unwanted materials in the form of urine. When the kidney does not work properly, dialysis is one of the best solutions. Dialysis required if unhealthy kidney does not remove enough wastes and fluid from the blood. This usually happens when only 10 - 15 % of kidney’s function left. A dialyzer is used to clean blood. In an attempt to address clinical and experimental discrepancies, compartmental theoretical models have been used. Noda et al. (1979) were among the first to introduce a theoretical model on mass transfer using countercurrent flows. Their proposed model assumes …


Solitary And Periodic Exact Solutions Of The Viscosity-Capillarity Van Der Waals Gas Equations, Emad A. Az-Zo’Bi Jun 2019

Solitary And Periodic Exact Solutions Of The Viscosity-Capillarity Van Der Waals Gas Equations, Emad A. Az-Zo’Bi

Applications and Applied Mathematics: An International Journal (AAM)

Periodic and soliton solutions are derived for the (1+1)-dimensional van der Waals gas system in the viscosity-capillarity regularization form. The system is handled via the e-φ(ξ) -expansion method. The obtained solutions have been articulated by the hyperbolic, trigonometric, exponential and rational functions with arbitrary constants. Mathematical analysis and numerical graphs are provided for some solitons, periodic and kink solitary wave solutions to visualize the dynamics of equations. Obtained results reveal that the method is very influential and effective tool for solving nonlinear partial differential equations in applied mathematics.


Transient Thermal Stresses Due To Axisymmetric Heat Supply In A Semi-Infinite Thick Circular Plate, S. D. Warbhe, K. C. Deshmukh Jun 2019

Transient Thermal Stresses Due To Axisymmetric Heat Supply In A Semi-Infinite Thick Circular Plate, S. D. Warbhe, K. C. Deshmukh

Applications and Applied Mathematics: An International Journal (AAM)

The present paper deals with the determination of thermal stresses in a semi-infinite thick circular plate of a finite length and infinite extent subjected to an axisymmetric heat supply. A thick circular plate is considered having constant initial temperature and arbitrary heat flux is applied on the upper and lower face. The governing heat conduction equation has been solved by using integral transform technique. The results are obtained in terms of Bessel’s function. The thermoelastic behavior has been computed numerically and illustrated graphically for a steel plate.


Optimal Homotopy Asymptotic Solution For Thermal Radiation And Chemical Reaction Effects On Electrical Mhd Jeffrey Fluid Flow Over A Stretching Sheet Through Porous Media With Heat Source, Gossaye Aliy, Naikoti Kishan Mar 2019

Optimal Homotopy Asymptotic Solution For Thermal Radiation And Chemical Reaction Effects On Electrical Mhd Jeffrey Fluid Flow Over A Stretching Sheet Through Porous Media With Heat Source, Gossaye Aliy, Naikoti Kishan

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, the problem of thermal radiation and chemical reaction effects on electrical MHD Jeffrey fluid flow over a stretching surface through a porous medium with the heat source is presented. We obtained the approximate analytical solution of the nonlinear differential equations governing the problem using the Optimal Homotopy Asymptotic Method (OHAM). Comparison of results has been made with the numerical solutions from the literature, and a very good agreement has been observed. Subsequently, effects of governing parameters of the velocity, temperature and concentration profiles are presented graphically and discussed.


Conformable Derivative Operator In Modelling Neuronal Dynamics, Mehmet Yavuz, Burcu Yaşkıran Dec 2018

Conformable Derivative Operator In Modelling Neuronal Dynamics, Mehmet Yavuz, Burcu Yaşkıran

Applications and Applied Mathematics: An International Journal (AAM)

This study presents two new numerical techniques for solving time-fractional one-dimensional cable differential equation (FCE) modeling neuronal dynamics. We have introduced new formulations for the approximate-analytical solution of the FCE by using modified homotopy perturbation method defined with conformable operator (MHPMC) and reduced differential transform method defined with conformable operator (RDTMC), which are derived the solutions for linear-nonlinear fractional PDEs. In order to show the efficiencies of these methods, we have compared the numerical and exact solutions of fractional neuronal dynamics problem. Moreover, we have declared that the proposed models are very accurate and illustrative techniques in determining to approximate-analytical …


Similarity Analysis Of Three Dimensional Nanofluid Flow By Deductive Group Theoretic Method, Hemangini Shukla, Hema C. Surati, M. G. Timol Dec 2018

Similarity Analysis Of Three Dimensional Nanofluid Flow By Deductive Group Theoretic Method, Hemangini Shukla, Hema C. Surati, M. G. Timol

Applications and Applied Mathematics: An International Journal (AAM)

The objective of this paper is to obtain similarity solution of three-dimensional nanofluid flow over flat surface stretched continuously in two lateral directions. Two independent variables from governing equations are reduced by applying deductive two parameter group theoretical method. Partial differential equations with boundary conditions are converted into ordinary differential equations with appropriate boundary conditions. Obtained equations are solved for temperature and velocity. The effect of nanoparticles volume fraction on temperature and velocity profile is investigated.


Linear Stability Analysis With Solution Patterns Due To Varying Thermal Diffusivity For A Convective Flow In A Porous Medium, Dambaru Bhatta Dec 2018

Linear Stability Analysis With Solution Patterns Due To Varying Thermal Diffusivity For A Convective Flow In A Porous Medium, Dambaru Bhatta

Applications and Applied Mathematics: An International Journal (AAM)

Here we investigate the effect of the vertical rate of change in thermal diffusivity due to a hydrothermal convective flow in a horizontal porous medium. The continuity equation, the heat equation and the momentum-Darcy equation constitute the governing system for the flow in a porous medium. Assuming a vertically varying basic state, we derive the linear system and from this linear system, we compute the critical Rayleigh and wave numbers. Using fourth-order Runge-Kutta and shooting methods, we obtain the marginal stability curves and linear solutions to analyze the solution pattern for different diffusivity parameters.


Finite Element Solution Of The Two-Dimensional Incompressible Navier-Stokes Equations Using Matlab, Endalew G. Tsega, V. K. Katiyar Jun 2018

Finite Element Solution Of The Two-Dimensional Incompressible Navier-Stokes Equations Using Matlab, Endalew G. Tsega, V. K. Katiyar

Applications and Applied Mathematics: An International Journal (AAM)

The Navier–Stokes equations are fundamental in fluid mechanics. The finite element method has become a popular method for the solution of the Navier-Stokes equations. In this paper, the Galerkin finite element method was used to solve the Navier-Stokes equations for two-dimensional steady flow of Newtonian and incompressible fluid with no body forces using MATLAB. The method was applied to the lid-driven cavity problem. The eight-noded rectangular element was used for the formulation of element equations. The velocity components were located at all of 8 nodes and the pressure variable is located at 4 corner of the element. From location of …


Generalized Problem Of Thermal Bending Analysis In The Cartesian Domain, V. S. Kulkarni, Vinayaki Parab Jun 2018

Generalized Problem Of Thermal Bending Analysis In The Cartesian Domain, V. S. Kulkarni, Vinayaki Parab

Applications and Applied Mathematics: An International Journal (AAM)

This is an attempt for mathematical formulation and general analytical solution of the most generalized thermal bending problem in the Cartesian domain. The problem has been formulated in the context of non-homogeneous transient heat equation subjected to Robin’s boundary conditions. The general solution of the generalized thermoelastic problem has been discussed for temperature change, displacements, thermal stresses, deflection, and deformation. The most important feature of this work is any special case of practical interest may be readily obtained by this most generalized mathematical formulation and its analytical solution. There are 729 such combinations of possible boundary conditions prescribed on parallelepiped …


Fractional Order Thermoelastic Deflection In A Thin Circular Plate, J. J. Tripathi, S. D. Warbhe, K. C. Deshmukh, J. Verma Dec 2017

Fractional Order Thermoelastic Deflection In A Thin Circular Plate, J. J. Tripathi, S. D. Warbhe, K. C. Deshmukh, J. Verma

Applications and Applied Mathematics: An International Journal (AAM)

In this work, a quasi-static uncoupled theory of thermoelasticity based on time fractional heat conduction equation is used to model a thin circular plate, whose lower surface is maintained at zero temperature whereas the upper surface is insulated. The edge of the circular plate is fixed and clamped. Integral transform technique is used to derive the analytical solutions in the physi-cal domain. The numerical results for temperature distributions and thermal deflection are com-puted and represented graphically for Copper material.


Effect Of Nonlinear Thermal Radiation On Mhd Chemically Reacting Maxwell Fluid Flow Past A Linearly Stretching Sheet, A. M. Ramireddy, J. V. Ramana Reddy, N. Sandeep, V. Sugunamma Jun 2017

Effect Of Nonlinear Thermal Radiation On Mhd Chemically Reacting Maxwell Fluid Flow Past A Linearly Stretching Sheet, A. M. Ramireddy, J. V. Ramana Reddy, N. Sandeep, V. Sugunamma

Applications and Applied Mathematics: An International Journal (AAM)

This communication addresses the influence of nonlinear thermal radiation on magneto hydrodynamic Maxwell fluid flow past a linearly stretching surface with heat and mass transfer. The effects of heat generation/absorption and chemical reaction are taken into account. At first, we converted the governing partial differential equations into nonlinear ordinary differential equations with the help of suitable similarity transformations and solved by using Runge-Kutta based shooting technique. Further, the effects of various physical parameters on velocity, temperature and concentration fields were discussed thoroughly with the help of graphs obtained by using bvp5c MATLAB package. In view of many engineering applications we …


New Structure For Exact Solutions Of Nonlinear Time Fractional Sharma-Tasso-Olver Equation Via Conformable Fractional Derivative, Hadi Rezazadeh, Farid S. Khodadad, Jalil Manafian Jun 2017

New Structure For Exact Solutions Of Nonlinear Time Fractional Sharma-Tasso-Olver Equation Via Conformable Fractional Derivative, Hadi Rezazadeh, Farid S. Khodadad, Jalil Manafian

Applications and Applied Mathematics: An International Journal (AAM)

In this paper new fractional derivative and direct algebraic method are used to construct exact solutions of the nonlinear time fractional Sharma-Tasso-Olver equation. As a result, three families of exact analytical solutions are obtained. The results reveal that the proposed method is very effective and simple for obtaining approximate solutions of nonlinear fractional partial differential equations.


Asymptotic Behavior Of Waves In A Nonuniform Medium, Nezam Iraniparast, Lan Nguyen, Mikhail Khenner Jun 2017

Asymptotic Behavior Of Waves In A Nonuniform Medium, Nezam Iraniparast, Lan Nguyen, Mikhail Khenner

Applications and Applied Mathematics: An International Journal (AAM)

An incoming wave on an infinite string, that has uniform density except for one or two jump discontinuities, splits into transmitted and reflected waves. These waves can explicitly be described in terms of the incoming wave with changes in the amplitude and speed. But when a string or membrane has continuous inhomogeneity in a finite region the waves can only be approximated or described asymptotically. Here, we study the cases of monochromatic waves along a nonuniform density string and plane waves along a membrane with nonuniform density. In both cases the speed of the physical system is assumed to tend …


Complex Solutions Of The Time Fractional Gross-Pitaevskii (Gp) Equation With External Potential By Using A Reliable Method, Nasir Taghizadeh, Mona N. Foumani Dec 2016

Complex Solutions Of The Time Fractional Gross-Pitaevskii (Gp) Equation With External Potential By Using A Reliable Method, Nasir Taghizadeh, Mona N. Foumani

Applications and Applied Mathematics: An International Journal (AAM)

In this article, modified (G'/G )-expansion method is presented to establish the exact complex solutions of the time fractional Gross-Pitaevskii (GP) equation in the sense of the conformable fractional derivative. This method is an effective method in finding exact traveling wave solutions of nonlinear evolution equations (NLEEs) in mathematical physics. The present approach has the potential to be applied to other nonlinear fractional differential equations. Based on two transformations, fractional GP equation can be converted into nonlinear ordinary differential equation of integer orders. In the end, we will discuss the solutions of the fractional GP equation with external potentials.


Impact Of Permeable Lining Of The Wall On The Peristaltic Flow Of Herschel Bulkley Fluid, G. C. Sankad, Asha Patil Dec 2016

Impact Of Permeable Lining Of The Wall On The Peristaltic Flow Of Herschel Bulkley Fluid, G. C. Sankad, Asha Patil

Applications and Applied Mathematics: An International Journal (AAM)

The peristaltic motion is modeled for the Herschel Bulkley fluid, considered to flow in a non-uniform inclined channel. The channel wall is supposed to be lined with a non-erodible porous material. The flow is considered to be moving in a wave frame of reference moving with same velocity as of the sinusoidal wave. Low Reynolds number and long wave length assumptions are made to solve the model. Analytical solution is obtained for the pressure difference and also for the frictional force. Graphs are plotted, using Mathematica software, for both the results of pressure difference and frictional force against time average …


Approximate Analytical Solution Of Boussinesq Equation In Homogeneous Medium With Leaky Base, Rajeev K. Bansal Jun 2016

Approximate Analytical Solution Of Boussinesq Equation In Homogeneous Medium With Leaky Base, Rajeev K. Bansal

Applications and Applied Mathematics: An International Journal (AAM)

Approximate analytical solutions of Boussinesq equation are widely used for approximation of subsurface seepage flow in confined and unconfined aquifers under varying hydrological conditions. In this paper, we use a 2-dimensional linearized Boussinesq equation to simulate the water table fluctuations in an isotropic aquifer overlying a semi pervious bed under multiple localized recharge and withdrawal. The unconfined aquifer is considered to be in contact with two water bodies of constant water head along opposite cost lines, while the remaining two faces have no flow condition. The mathematical model is solved analytically using finite Fourier sine transform and the application of …


Exact Implicit Solution Of Nonlinear Heat Transfer In Rectangular Straight Fin Using Symmetry Reduction Methods, M. S. Abdel Latif, A. H. Abdel Kader, H. M. Nour Dec 2015

Exact Implicit Solution Of Nonlinear Heat Transfer In Rectangular Straight Fin Using Symmetry Reduction Methods, M. S. Abdel Latif, A. H. Abdel Kader, H. M. Nour

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, the exact implicit solution of the second order nonlinear ordinary differential equation which governing heat transfer in rectangular fin is obtained using symmetry reduction methods. General relationship among the temperature at the fin tip, the temperature gradient at the fin base, the mode of heat transfer, 𝑛 and the fin parameters 𝑁 and ℰ is obtained. Some numerical examples are discussed and it is shown that the temperature of fin increases when approaching from the heat source. The relationship between the fin efficiency and the temperature of fin tip is obtained for any value of the mode …


Boundary-Layer Flow Of Nanofluids Over A Moving Surface In The Presence Of Thermal Radiation, Viscous Dissipation And Chemical Reaction, Eshetu Haile, B. Shankar Dec 2015

Boundary-Layer Flow Of Nanofluids Over A Moving Surface In The Presence Of Thermal Radiation, Viscous Dissipation And Chemical Reaction, Eshetu Haile, B. Shankar

Applications and Applied Mathematics: An International Journal (AAM)

The flow problem presented in the paper is boundary-layer flow of nanofluids over a moving surface in the presence of thermal radiation, viscous dissipation and chemical reaction. The plate is assumed to move in the same or opposite direction to the free stream which depends on the sign of the velocity parameter. The partial differential equations appearing in the governing equations are transformed into a couple of nonlinear ordinary differential equations using similarity transformations. The transformed equations in turn are solved numerically by the shooting method along with the fourth order Runge-Kutta integration technique. Influences of the pertinent parameters in …


Kink, Singular Soliton And Periodic Solutions To Class Of Nonlinear Equations, Marwan Alquran, Safwan Al-Shara, Sabreen Al-Nimrat Jun 2015

Kink, Singular Soliton And Periodic Solutions To Class Of Nonlinear Equations, Marwan Alquran, Safwan Al-Shara, Sabreen Al-Nimrat

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we extend the ordinary differential Duffing equation into a partial differential equation. We study the traveling wave solutions to this model by using the G'/G expansion method. Then, based on the obtained results given for the Duffing equation, we generate kink, singular soliton and periodic solutions for a coupled integrable dispersionless nonlinear system. All the solutions given in this work are verified.


New Exact Solutions Of The Perturbed Nonlinear Fractional Schr¨Odinger Equation Using Two Reliable Methods, Nasir Taghizadeh, Mona N. Foumani, Vahid S. Mohammadi Jun 2015

New Exact Solutions Of The Perturbed Nonlinear Fractional Schr¨Odinger Equation Using Two Reliable Methods, Nasir Taghizadeh, Mona N. Foumani, Vahid S. Mohammadi

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, the fractional derivatives in the sense of the modified Riemann-Liouville derivative and the first integral method and the Bernoulli sub-ODE method are employed for constructing the exact complex solutions of the perturbed nonlinear fractional Schr ¨odinger equation and comparing the solutions.


Implicit-Explicit Higher-Order Time Integration Schemes For Computations Of Structural Dynamics With Fluid-Structure Interaction, José C. Pedro, Mapundi K. Banda, Precious Sibanda Jun 2015

Implicit-Explicit Higher-Order Time Integration Schemes For Computations Of Structural Dynamics With Fluid-Structure Interaction, José C. Pedro, Mapundi K. Banda, Precious Sibanda

Applications and Applied Mathematics: An International Journal (AAM)

In this paper higher order implicit Runge-Kutta schemes are applied to fluid-structure interaction (FSI) simulations. A staggered approach with a structural predictor is applied to an FSI problem. The equations governing the dynamics of the structure are integrated in time by the Explicit Single Diagonal Implicit Runge-Kutta (ESDIRK) schemes and the arbitrary high order finite volume scheme is taken as the fluid solver. The performance of the ESDIRK scheme of order of convergence three to five is tested. Comparative studies with other time integration schemes which have been successfully applied to FSI problems are undertaken. Comparisons to test the performance …


Unsteady Boundary Layer Flow Of Thermophoretic Mhd Nanofluid Past A Stretching Sheet With Space And Time Dependent Internal Heat Source/Sink, N. Sandeep, C. Sulochana, C. S. K. Raju, M. J. Babu, V. Sugunamma Jun 2015

Unsteady Boundary Layer Flow Of Thermophoretic Mhd Nanofluid Past A Stretching Sheet With Space And Time Dependent Internal Heat Source/Sink, N. Sandeep, C. Sulochana, C. S. K. Raju, M. J. Babu, V. Sugunamma

Applications and Applied Mathematics: An International Journal (AAM)

In this study we analyze the boundary layer flow of a thermophoretic magnetohydrodynamic dissipative nanofluid over an unsteady stretching sheet in a porous medium with space and time dependent internal heat source/sink. The governing equations are transformed to ordinary differential equations by using similarity transformation. Numerical solutions of these equations are obtained by using the Shooting Technique. The effects of non-dimensional governing parameters on the velocity, temperature, concentration profiles, friction factor, Nusselt and Sherwood numbers are discussed and presented through graphs and tables. Accuracy of the results compared with the existing ones. Excellent agreement is found with earlier studies.


Scaling Group Analysis On Mhd Free Convective Heat And Mass Transfer Over A Stretching Surface With Suction / Injection, Heat Source/Sink Considering Viscous Dissipation And Chemical Reaction Effects, Hunegnaw Dessie, Naikoti Kishan Dec 2014

Scaling Group Analysis On Mhd Free Convective Heat And Mass Transfer Over A Stretching Surface With Suction / Injection, Heat Source/Sink Considering Viscous Dissipation And Chemical Reaction Effects, Hunegnaw Dessie, Naikoti Kishan

Applications and Applied Mathematics: An International Journal (AAM)

This paper concerns with scaling group analysis on MHD free convective heat and mass transfer over stretching surface considering effects of thermal-diffusion and diffusion-thermo with suction /injection, heat source/sink and chemical reaction by taking into account viscous dissipation. Scaling group transformations are used to convert the partial differential equations of governing equations into ordinary differential equation and are solved numerically by Keller Box Method. Numerical results obtained for different parameters are drawn graphically and their effects on velocity, temperature and concentration profiles are discussed and shown graphically. Skin-friction coefficient, Nusselt number and Sherwood number are presented in table. It is …