Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Faster, Cheaper, And Better Cfd: A Case For Machine Learning To Augment Reynolds-Averaged Navier-Stokes, John Peter Romano Ii Oct 2023

Faster, Cheaper, And Better Cfd: A Case For Machine Learning To Augment Reynolds-Averaged Navier-Stokes, John Peter Romano Ii

Mechanical & Aerospace Engineering Theses & Dissertations

In recent years, the field of machine learning (ML) has made significant advances, particularly through applying deep learning (DL) algorithms and artificial intelligence (AI). The literature shows several ways that ML may enhance the power of computational fluid dynamics (CFD) to improve its solution accuracy, reduce the needed computational resources and reduce overall simulation cost. ML techniques have also expanded the understanding of underlying flow physics and improved data capture from experimental fluid dynamics.

This dissertation presents an in-depth literature review and discusses ways the field of fluid dynamics has leveraged ML modeling to date. The author selects and describes …


Using Deep Neural Networks To Classify Astronomical Images, Andrew D. Macpherson May 2023

Using Deep Neural Networks To Classify Astronomical Images, Andrew D. Macpherson

Honors Projects

As the quantity of astronomical data available continues to exceed the resources available for analysis, recent advances in artificial intelligence encourage the development of automated classification tools. This paper lays out a framework for constructing a deep neural network capable of classifying individual astronomical images by describing techniques to extract and label these objects from large images.


A Quantum Approach To Language Modeling, Constantijn Van Der Poel Feb 2023

A Quantum Approach To Language Modeling, Constantijn Van Der Poel

Dissertations, Theses, and Capstone Projects

This dissertation consists of six chapters. . . Chapter 1: We introduce language modeling, outline the software used for this thesis, and discuss related work. Chapter 2: We will unpack the transition from classical to quantum probabilities, as well as motivate their use in building a model to understand language-like datasets. Chapter 3: We motivate the Motzkin dataset, the models we will be investigating, as well as the necessary algorithms to do calculations with them. Chapter 4: We investigate our models’ sensitivity to various hyperparameters. Chapter 5: We compare the performance and robustness of the models. Chapter 6: We conclude …


Multi-Modality Automatic Lung Tumor Segmentation Method Using Deep Learning And Radiomics, Siqiu Wang Jan 2022

Multi-Modality Automatic Lung Tumor Segmentation Method Using Deep Learning And Radiomics, Siqiu Wang

Theses and Dissertations

Delineation of the tumor volume is the initial and fundamental step in the radiotherapy planning process. The current clinical practice of manual delineation is time-consuming and suffers from observer variability. This work seeks to develop an effective automatic framework to produce clinically usable lung tumor segmentations. First, to facilitate the development and validation of our methodology, an expansive database of planning CTs, diagnostic PETs, and manual tumor segmentations was curated, and an image registration and preprocessing pipeline was established. Then a deep learning neural network was constructed and optimized to utilize dual-modality PET and CT images for lung tumor segmentation. …


Motion-Induced Artifact Mitigation And Image Enhancement Strategies For Four-Dimensional Fan-Beam And Cone-Beam Computed Tomography, Matthew J. Riblett Jan 2018

Motion-Induced Artifact Mitigation And Image Enhancement Strategies For Four-Dimensional Fan-Beam And Cone-Beam Computed Tomography, Matthew J. Riblett

Theses and Dissertations

Four dimensional imaging has become part of the standard of care for diagnosing and treating non-small cell lung cancer. In radiotherapy applications 4D fan-beam computed tomography (4D-CT) and 4D cone-beam computed tomography (4D-CBCT) are two advanced imaging modalities that afford clinical practitioners knowledge of the underlying kinematics and structural dynamics of diseased tissues and provide insight into the effects of regular organ motion and the nature of tissue deformation over time. While these imaging techniques can facilitate the use of more targeted radiotherapies, issues surrounding image quality and accuracy currently limit the utility of these images clinically.

The purpose of …