Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Synthesis, Characterization, And Simulation Of Two-Dimensional Materials, Lawrence Hudy Aug 2023

Synthesis, Characterization, And Simulation Of Two-Dimensional Materials, Lawrence Hudy

Theses and Dissertations

ABSTRACT

SYNTHESIS, CHARACTERIZATION, AND SIMULATION OF TWO-DIMENSIONAL MATERIALS

by

Lawrence Hudy

The University of Wisconsin-Milwaukee, 2023Under the Supervision of Professor Michael Weinert

This dissertation focuses on my journey through many aspects of surface science leading to the first principles investigation of transition metal dichalcogenides studying the impact of defects, twist, and decreasing interlayer separation to probe their effect on the electronic properties of these materials. My journey started out learning many aspects of material science such as methods for material synthesis and characterization but later ended on simulation of material properties using density functional theory. In the first experiments, we …


Analysis And Application Of Finite Element And High-Order Finite Difference Methods For Maxwell’S Equations In Complex Media, Li Zhu May 2023

Analysis And Application Of Finite Element And High-Order Finite Difference Methods For Maxwell’S Equations In Complex Media, Li Zhu

UNLV Theses, Dissertations, Professional Papers, and Capstones

The Perfectly Matched Layer (PML) technique is an effective tool introduced by B´erenger [13] to reduce the unbounded wave propagation problem to a bounded domain problem. This dissertation focuses on two different PML models and their applications to wave propagation problems with Maxwell’s equation in complex media. We investigate these models using two popular numerical methods: the Finite Difference Method (FDM) in Chapters 2 and 3, and the Finite Element Method (FEM) in Chapters 4 and 5.In Chapter 2, we focus on analyzing the stability of a PML developed by B’ecache et al. [10] for simulating wave propagation in the …


Toward Devices For Exploring Pt-Symmetry In Electronic Transport Of Graphene, Michael Carovillano May 2019

Toward Devices For Exploring Pt-Symmetry In Electronic Transport Of Graphene, Michael Carovillano

Senior Honors Papers / Undergraduate Theses

Parity-time symmetry, or PT -symmetry is the principle that in quantum mechanics a non- Hermitian Hamiltonian is capable of returning real eigenstates and real spectra.Recent research has demonstrated real world observation of PT -symmetry in electronics and optics. We aim to expand the regime of observed PT -symmetry through measurement of the electronic transport of graphene devices. Drawing from analogous experiments, we plan to use balanced ohmic resistance acting as both loss and relative gain to induce the required unbroken PT -symmetry regime. This paper analyzes techniques used in fabrication of such devices as well as the basis of the …


Measuring Nonlinear Properties Of Graphene Thin Films Using Z-Scan Technique, Thekrayat Hassan Al Abdulaal Dec 2016

Measuring Nonlinear Properties Of Graphene Thin Films Using Z-Scan Technique, Thekrayat Hassan Al Abdulaal

Graduate Theses and Dissertations

The nonlinear studies of two-dimensional (2D) nanomaterials, specifically graphene, are very significant since graphene is finding its usefulness in handling the enormous heat in nanoscale high-density power electronics. Graphene has emerged to be a promising nanomaterial as an excellent heat spreader due to its high thermal conductivity. However, the experimental nonlinear study of graphene materials and their application in developing future optoelectronic devices demands for more developed research.

The research objective is first to build a precise, and sensitive technique to investigate and understand the thermal nonlinear properties, including nonlinear refractive index (n2), nonlinear absorption coefficient (β), and thermo-optic coefficient …


Polarization Charge Density In Strained Graphene, Noah Wilson Jan 2016

Polarization Charge Density In Strained Graphene, Noah Wilson

Graduate College Dissertations and Theses

Graphene, the world's first truly two-dimensional material, is unique for having an electronic structure described by an effective Lorentz invariant theory. One important consequence is that the ratio or Coulomb energy to kinetic energy is a constant, depending only on conditions within the lattice rather than on the average charge density as in a typical Galilean invariant material. Given this unusual property, a natural question would be how do phenomena, such as screening of a Coulomb impurity, happen in graphene? Moreover, how does the addition of uniaxial strain enhance or diminish this behavior? Here I discuss our work to calculate …