Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Comparing Twins Ion Temperature Maps With Mms, Ampere, And Themis Observations During July 26, 2017 Reconnection Event, Isabella M. Householder Jan 2022

Comparing Twins Ion Temperature Maps With Mms, Ampere, And Themis Observations During July 26, 2017 Reconnection Event, Isabella M. Householder

Honors Theses and Capstones

The solar wind releases a constant stream of ionized particles into space which causes complex behaviors to occur within Earth’s magnetosphere. These disruptions can initiate magnetic reconnection and cause flow reversal of ions in the magnetotail. Two flow reversal events were locally detected by the Magnetospheric Multiscale Mission (MMS) on July 26, 2017 at 0700 UT and 0730 UT. The Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) provide a global measurement of heated signatures of the magnetic field and detected an increase in ion temperature during these reconnection events without the presence of a geomagnetic storm. Active Magnetosphere and Planetary Electrodynamics …


Development Of A Fluxgate Magnetometer Model, Eleonora Olsmats Jan 2022

Development Of A Fluxgate Magnetometer Model, Eleonora Olsmats

Honors Theses and Capstones

As a part of the UNH SWFO-L1 mission to monitor space weather and the sun’s behavior, the fluxgate magnetometer is an important component to measure external magnetic fields. The basic principle of a fluxgate magnetometer is to detect changes in the ambient magnetic field by inducing a magnetic field in a ferromagnetic material via a drive winding. Each magnetometer is unique due to the ferromagnetic properties of the core material which can be seen in the hysteresis loop which is a relationship between the magnetic field strength (H) and the induced magnetic field (B). Measuring the hysteresis of a fluxgate …


Location And Calibration Of Lightning Pulses From Lofar Radiation Measurements, Nicholas R. Demers Jan 2022

Location And Calibration Of Lightning Pulses From Lofar Radiation Measurements, Nicholas R. Demers

Honors Theses and Capstones

Lightning has the power to shock and awe as an incredible force of nature, yet so many phenomena surrounding lightning are still not well-understood. In fact, the very physics regarding what actually sparks a lightning strike remain poorly defined. In an effort to understand how lightning initiation is achieved, data collected from the Low Frequency Array in the Netherlands were calibrated and interferometry performed to map the flash in 4D space. The calibration process itself is explored, from choosing lightning sources to calibrate, to the various stages of calibration leading to a fully calibrated flash ready for interferometric analysis. Using …


Attempts To Measure Nanosecond Resolved Electronic Dynamics Of Charge Density Wave Phase Transition In 1t-Tas2, Ben Campbell Jan 2022

Attempts To Measure Nanosecond Resolved Electronic Dynamics Of Charge Density Wave Phase Transition In 1t-Tas2, Ben Campbell

Honors Theses and Capstones

Scanning tunneling microscopes allow for atomic spatial resolution but the resulting images are necessarily time-averaged and fast dynamics are lost. Pump-probe spectroscopy is a common optical technique used to measure ultrafast electronic dynamics but the integration of optical pump-probe spectroscopy into an STM requires specialized knowledge and equipment. Alternatively, an all-electronic pump-probe spectroscopy technique has recently been developed for use with an STM that replaces the laser pulses of optical pump-probe with voltage pulses. In this paper, I implemented an all-electronic pump-probe scheme into an existing scanning tunneling microscope using an arbitrary waveform generator and a lock-in amplifier. I developed …