Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Fall Forward, Spring Back: Drivers Of Synchrony In The Sea Star Crawl-Bounce Gait Transition, Brady R. Nichols Jan 2024

Fall Forward, Spring Back: Drivers Of Synchrony In The Sea Star Crawl-Bounce Gait Transition, Brady R. Nichols

Honors Projects

The Froude number is the ratio of kinetic energy to gravitational potential energy used during locomotion and is often used to analyze gait transitions. Here, I compare and contrast the human walk-run gait transition, which occurs at a consistent Froude number of 1 because there exists a mechanical speed limit to walking, and the sea star crawl-bounce gait transition, which occurs around Froude numbers of 1*10^-3. In this thesis I investigate why sea stars exhibit two gaits despite lacking brains and moving at Froude numbers far below other known gait transitions, hypothesizing (1) that the crawl-bounce transition may be mechanical …


Modeling Uv Light Through N95 Filters, Lorenzo Hess Jan 2023

Modeling Uv Light Through N95 Filters, Lorenzo Hess

Honors Projects

Reuse of N95 FFRs helps mitigate the effects of shortages. UV-C exposure is an ideal method for the decontamination necessary for FFR reuse. Recent research quantifies the transmittance of UV-C through the 3M1870+ and 3M9210+ FFRs [1]. Other research measures the reduction in viral load in relation to UV-C exposure time [11]. We design and program a ray tracing simulator in MATLAB to characterize the distribution of scattered photons in N95 FFRs. We implement an object-oriented FFR with configurable physical characteristics. We use the simulator to record the number of photons available for decontamination in each sub-layer of the filtering …


Properties Of Slicing Conditions For Charged Black Holes, Sean E. Li Jan 2023

Properties Of Slicing Conditions For Charged Black Holes, Sean E. Li

Honors Projects

We consider an earlier analysis by Baumgarte and de Oliveira (2022) of static Bona-Massó slices of stationary, nonrotating, uncharged black holes, represented by Schwarzschild spacetimes, and generalize that approach to Reissner-Nordström (RN) spacetimes, representing stationary, nonrotating black holes that carry a nonzero charge. This charge is parametrized by the charge-to-mass ratio λQ/M, where M is the black-hole mass and the charge Q may represent electrical charge or act as a placeholder for extensions of general relativity. We use a height-function approach to construct time-independent, spherically symmetric slices that satisfy a so-called Bona-Massó slicing condition. We …