Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Quantum Error Detection Without Using Ancilla Qubits, Nicolas Guerrero Sep 2022

Quantum Error Detection Without Using Ancilla Qubits, Nicolas Guerrero

Theses and Dissertations

Quantum computers are beset by errors from a variety of sources. Although quantum error correction and detection codes have been developed since the 1990s, these codes require mid-circuit measurements in order to operate. In order to avoid these measurements we have developed a new error detection code that only requires state collapses at the end of the circuit, which we call no ancilla error detection (NAED). We investigate some of the mathematics behind NAED such as which codes can detect which errors. We then run NAED on three separate types of circuits: Greenberger–Horne–Zeilinger circuits, phase dependent circuits, and a quantum …


Impacts Of Sub-Auroral Polarization Streams On High Frequency Operations As A Function Of Modeled Particle Energy Flux, Nathan D. Smith Mar 2018

Impacts Of Sub-Auroral Polarization Streams On High Frequency Operations As A Function Of Modeled Particle Energy Flux, Nathan D. Smith

Theses and Dissertations

Space weather events can cause irregularities within the ionosphere; in particular, this research examines sub-auroral polarization streams (SAPS), as their accompanying irregularities and effects can degrade high-frequency (HF) signal propagation. It is known that the strongest westerly current drifts delineating SAPS are associated with a deep ionospheric trough, which in turn contaminates HF data with clutter from the non-standard ionosphere. Having a methodology to track and identify these occurrences on current computational architecture would provide operators enhanced situational awareness in knowing to expect degradation in HF processes. This study has discovered a weak, yet significant, exponentially decaying correlation between maximum …


Improving Fallout Characterization By Using Multivariate Techniques To Determine Composition, Christopher R. Pitkins Mar 2018

Improving Fallout Characterization By Using Multivariate Techniques To Determine Composition, Christopher R. Pitkins

Theses and Dissertations

Multivariate statistical techniques have been applied in order to un-mix nuclear fallout debris chemical data. This information is critical to characterization of fallout particle formation following a nuclear detonation. Understanding the correlation between environmental precursors and actinide concentrations in post-detonation nuclear fallout material aids in understanding the physical and chemical processes that alter nuclear device signatures in the fireball. This research examines 123 nuclear fallout samples from a historical nuclear test. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) are used to collect chemical compositions of the fallout samples. Principal component analysis (PCA) is applied in order to examine …


Hyperspectral Imaging Of A Turbine Engine Exhaust Plume To Determine Radiance, Temperature, And Concentration Spatial Distributions, Spencer J. Bowen Mar 2009

Hyperspectral Imaging Of A Turbine Engine Exhaust Plume To Determine Radiance, Temperature, And Concentration Spatial Distributions, Spencer J. Bowen

Theses and Dissertations

The usefulness of imaging Fourier transform spectroscopy (IFTS) when looking at a rapidly varying turbine engine exhaust scene was explored by characterizing the scene change artifacts (SCAs) present in the plume and the effect they have on the calibrated spectra using the Telops, Inc.-manufactured Field-portable Imaging Radiometric Spectrometer Technology, Midwave Extended (FIRST-MWE). It was determined that IFTS technology can be applied to the problem of a rapidly varying turbine engine exhaust plume due to the zero mean, stochastic nature of the SCAs, through the use of temporal averaging. The FIRST-MWE produced radiometrically calibrated hyperspectral datacubes, with calibration uncertainty of 35% …


Testing Of The New Usgs K Index Algorithm At Bear Lake Observatory, Ariel O. Acebal Mar 2000

Testing Of The New Usgs K Index Algorithm At Bear Lake Observatory, Ariel O. Acebal

Theses and Dissertations

The K index was developed by Bartels in 1939 as an estimate of the level of geomagnetic activity caused by the Sun. This index was computed manually every three hours at geomagnetic observatories using the magnetic traces of the surface planetary magnetic field. In 1991, the International Association of Geomagnetism and Aeronomy approved four additional methods to compute the K index; all of them were computer algorithms. One of the approved methods, the Wilson code, recently underwent some modifications. The new algorithm is now part of a Windows-based computer program being developed by the United States Geological Survey (USGS). After …


Displacement Of The Earth's Bow Shock And Magnetopause Due To An Impinging Interplanetary Shock Wave, William A. Olson Dec 1997

Displacement Of The Earth's Bow Shock And Magnetopause Due To An Impinging Interplanetary Shock Wave, William A. Olson

Theses and Dissertations

Interplanetary shock waves (ISWs) propagating through the solar wind can collide with the earth's bow shock, resulting in a series of new shocks, contact discontinuities, and rarefaction waves which interact to effectively move the bow shock and magnetopause toward the earth. A one dimensional MacCormack predictor corrector algorithm with Flux Corrected Transport (FCT) was developed to model the ISW bow shock and magnetopause interactions, and to numerically predict their propagation speeds after collision. Analytic relationships for the Mach numbers and propagation speeds of the generated shock waves and contact discontinuities were used to validate the model and to compare numerical …