Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

On Superoscillations And Supershifts In Several Variables, Yakir Aharonov, Fabrizio Colombo, Andrew N. Jordan, Irene Sabadini, Tomer Shushi, Daniele C. Struppa, Jeff Tollaksen Jul 2022

On Superoscillations And Supershifts In Several Variables, Yakir Aharonov, Fabrizio Colombo, Andrew N. Jordan, Irene Sabadini, Tomer Shushi, Daniele C. Struppa, Jeff Tollaksen

Mathematics, Physics, and Computer Science Faculty Articles and Research

The aim of this paper is to study a class of superoscillatory functions in several variables, removing some restrictions on the functions that we introduced in a previous paper. Since the tools that we used with our approach are not common knowledge we will give detailed proof for the case of two variables. The results proved for superoscillatory functions in several variables can be further extended to supershifts in several variables.


Realization Of Tensor Product And Of Tensor Factorization Of Rational Functions, Daniel Alpay, Izchak Lewkowicz Apr 2019

Realization Of Tensor Product And Of Tensor Factorization Of Rational Functions, Daniel Alpay, Izchak Lewkowicz

Mathematics, Physics, and Computer Science Faculty Articles and Research

We study the state space realization of a tensor product of a pair of rational functions. At the expense of “inflating” the dimensions, we recover the classical expressions for realization of a regular product of rational functions. Under an additional assumption that the limit at infinity of a given rational function exists and is equal to identity, we introduce an explicit formula for a tensor factorization of this function.


Mass Additivity And A Priori Entailment, Kelvin J. Mcqueen Jan 2015

Mass Additivity And A Priori Entailment, Kelvin J. Mcqueen

Philosophy Faculty Articles and Research

The principle of mass additivity states that the mass of a composite object is the sum of the masses of its elementary components. Mass additivity is true in Newtonian mechanics but false in special relativity. Physicists have explained why mass additivity is true in Newtonian mechanics by reducing it to Newton’s microphysical laws. This reductive explanation does not fit well with deducibility theories of reductive explanation such as the modern Nagelian theory of reduction, and the a priori entailment theory of reduction that is prominent in the philosophy of mind. Nonetheless, I argue that a reconstruction of the explanation that …