Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Thermoelastic Analysis Of A Nonhomogeneous Hollow Cylinder With Internal Heat Generation, V. R. Manthena, N. K. Lamba, G. D. Kedar Dec 2017

Thermoelastic Analysis Of A Nonhomogeneous Hollow Cylinder With Internal Heat Generation, V. R. Manthena, N. K. Lamba, G. D. Kedar

Applications and Applied Mathematics: An International Journal (AAM)

In the present paper, we have determined the heat conduction and thermal stresses of a hollow cylinder with inhomogeneous material properties and internal heat generation. All the material properties except Poisson’s ratio and density are assumed to be given by a simple power law in axial direction. We have obtained the solution of the two dimensional heat conduction equation in the transient state in terms of Bessel’s and trigonometric functions. The influence of inhomogeneity on the thermal and mechanical behavior is examined. Numerical computations are carried out for both homogeneous and nonhomogeneous cylinders and are represented graphically.


Thermal Stress Analysis In A Functionally Graded Hollow Elliptic-Cylinder Subjected To Uniform Temperature Distribution, V. R. Manthena, N. K. Lamba, G. D. Kedar Jun 2017

Thermal Stress Analysis In A Functionally Graded Hollow Elliptic-Cylinder Subjected To Uniform Temperature Distribution, V. R. Manthena, N. K. Lamba, G. D. Kedar

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, an analytical method of a thermoelastic problem for a medium with functionally graded material properties is developed in a theoretical manner for the elliptic-cylindrical coordinate system under the assumption that the material properties except for Poisson’s ratio and density are assumed to vary arbitrarily with the exponential law in the radial direction. An attempt has been made to reconsider the fundamental system of equations for functionally graded solids in a two-dimensional state under thermal and mechanical loads. The general solution of displacement formulation is obtained by the introduction of appropriate transformation and carried out the analysis by …


Numerical Solution Of Fractional Integro-Differential Equations With Nonlocal Conditions, M. Jani, D. Bhatta, S. Javadi Jun 2017

Numerical Solution Of Fractional Integro-Differential Equations With Nonlocal Conditions, M. Jani, D. Bhatta, S. Javadi

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we present a numerical method for solving fractional integro-differential equations with nonlocal boundary conditions using Bernstein polynomials. Some theoretical considerations regarding fractional order derivatives of Bernstein polynomials are discussed. The error analysis is carried out and supported with some numerical examples. It is shown that the method is simple and accurate for the given problem.


Effect Of Nonlinear Thermal Radiation On Mhd Chemically Reacting Maxwell Fluid Flow Past A Linearly Stretching Sheet, A. M. Ramireddy, J. V. Ramana Reddy, N. Sandeep, V. Sugunamma Jun 2017

Effect Of Nonlinear Thermal Radiation On Mhd Chemically Reacting Maxwell Fluid Flow Past A Linearly Stretching Sheet, A. M. Ramireddy, J. V. Ramana Reddy, N. Sandeep, V. Sugunamma

Applications and Applied Mathematics: An International Journal (AAM)

This communication addresses the influence of nonlinear thermal radiation on magneto hydrodynamic Maxwell fluid flow past a linearly stretching surface with heat and mass transfer. The effects of heat generation/absorption and chemical reaction are taken into account. At first, we converted the governing partial differential equations into nonlinear ordinary differential equations with the help of suitable similarity transformations and solved by using Runge-Kutta based shooting technique. Further, the effects of various physical parameters on velocity, temperature and concentration fields were discussed thoroughly with the help of graphs obtained by using bvp5c MATLAB package. In view of many engineering applications we …


New Structure For Exact Solutions Of Nonlinear Time Fractional Sharma-Tasso-Olver Equation Via Conformable Fractional Derivative, Hadi Rezazadeh, Farid S. Khodadad, Jalil Manafian Jun 2017

New Structure For Exact Solutions Of Nonlinear Time Fractional Sharma-Tasso-Olver Equation Via Conformable Fractional Derivative, Hadi Rezazadeh, Farid S. Khodadad, Jalil Manafian

Applications and Applied Mathematics: An International Journal (AAM)

In this paper new fractional derivative and direct algebraic method are used to construct exact solutions of the nonlinear time fractional Sharma-Tasso-Olver equation. As a result, three families of exact analytical solutions are obtained. The results reveal that the proposed method is very effective and simple for obtaining approximate solutions of nonlinear fractional partial differential equations.


Numerical Simulation Of The Phase Space Of Jupiter-Europa System Including The Effect Of Oblateness, Vinay Kumar, Beena R. Gupta, Rajiv Aggarwal Jun 2017

Numerical Simulation Of The Phase Space Of Jupiter-Europa System Including The Effect Of Oblateness, Vinay Kumar, Beena R. Gupta, Rajiv Aggarwal

Applications and Applied Mathematics: An International Journal (AAM)

We have numerically investigated the phase space of the Jupiter-Europa system in the framework of a Circular Restricted Three-Body Problem. In our model, Jupiter is taken as oblate primary. We have considered time-frequency analysis (TFA) based on wavelets and the Poincare Surface of Section (PSS) for the characterization of orbits in the Jupiter-Europa model. We have exploited both cases: a system with and without considering the effect of oblateness. Graphs (ridge-plots) explaining the phenomenon of resonance trapping, a difference between chaotic sticky orbit and the non-sticky orbit, and periodic and quasi-periodic orbit are presented. Our results of Poincare surfaces of …