Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Understanding The Plasmonic Properties Of Metallic Nanostructures With Correlated Photon- And Electron-Driven Excitations, Vighter Ozezinimize Iberi May 2014

Understanding The Plasmonic Properties Of Metallic Nanostructures With Correlated Photon- And Electron-Driven Excitations, Vighter Ozezinimize Iberi

Doctoral Dissertations

The collective oscillation of the conduction band electrons in metal nanostructures, known as plasmons, can be used to manipulate light on length scales that are smaller than the diffraction limit of visible light. In this dissertation, a correlated approach is used to probe localized surface plasmon resonances (LSPRs) in metallic nanostructures, and their application to surface-enhanced spectroscopy. This correlated approach involves the measurement of LSPRs with dark-field optical microscopy (resonance-Rayleigh scattering), and electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). Structural parameters of the exact same nanostructures obtained from the STEM are subsequently used in performing fully …


Reference Compensation For Localized Surface-Plasmon Resonance Sensors, Neha Nehru Jan 2014

Reference Compensation For Localized Surface-Plasmon Resonance Sensors, Neha Nehru

Theses and Dissertations--Electrical and Computer Engineering

Noble metal nanoparticles supporting localized surface plasmon resonances (LSPR) have been extensively investigated for label free detection of various biological and chemical interactions. When compared to other optical sensing techniques, LSPR sensors offer label-free detection of biomolecular interactions in localized sensing volume solutions. However, these sensors also suffer from a major disadvantage – LSPR sensors remain highly susceptible to interference because they respond to both solution refractive index change and non-specific binding as well as specific binding of the target analyte. These interactions can severely compromise the measurement of the target analyte in a complex unknown media and hence limit …