Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Investigation Of Laser And Nonlinear Properties Of Anderson Localizing Optical Fibers, Cody Ryan Bassett Nov 2022

Investigation Of Laser And Nonlinear Properties Of Anderson Localizing Optical Fibers, Cody Ryan Bassett

Optical Science and Engineering ETDs

In this dissertation, I investigate the possibility of lasing and nonlinear phenomena in completely solid-state transverse Anderson localizing optical fibers (TALOFs). I examine three areas within this range of topics. The research in nonlinear phenomena focuses on four-wave mixing (FWM). FWM is of high interest in TALOFs due to the fact that guided localized modes of the fiber each have different propagation constants, and thus unique possible FWM pairs can be generated from the same input pump beam. I demonstrate the generation of FWM in the TALOF by pumping it with 532 nm light into a localized mode and observing …


Oxygen Vacancies In Lib3O5 Crystals And Their Role In Nonlinear Absorption, Brian C. Holloway, Christopher A. Lenyk, Timothy D. Gustafson, Nancy C. Giles Oct 2022

Oxygen Vacancies In Lib3O5 Crystals And Their Role In Nonlinear Absorption, Brian C. Holloway, Christopher A. Lenyk, Timothy D. Gustafson, Nancy C. Giles

Faculty Publications

LiB3O5 (LBO) crystals are used to generate the second, third, and fourth harmonics of near-infrared solid-state lasers. At high power levels, the material’s performance is adversely affected by nonlinear absorption. We show that as-grown crystals contain oxygen and lithium vacancies. Transient absorption bands are formed when these intrinsic defects serve as traps for “free” electrons and holes created by x rays or by three- and four-photon absorption processes. Trapped electrons introduce a band near 300 nm and trapped holes produce bands in the 500-600 nm region. Electron paramagnetic resonance (EPR) is used to identify and characterize the …


Control Of Nonlinear Properties Of Van Der Waals Materials, Rezlind Bushati Sep 2022

Control Of Nonlinear Properties Of Van Der Waals Materials, Rezlind Bushati

Dissertations, Theses, and Capstone Projects

Van der Waals materials are a broad class of materials that exhibit unique optoelectronic properties. They provide a rich playground for which they can be integrated into current on-chip devices due to their nanometer-scale size, and be utilized for studying fundamental physics. Strong coupling of emitters to microcavities provides many opportunities for new exotic physics through the formation of hybrid quasi-particles exciton-polaritons. This thesis
focuses on exploring and enhancing nonlinearity of van der Waals materials through strongly coupling to microcavities. By taking advantage of the stacking order of TMDs, we show intense second-harmonic generation from bulk, centrosymmetric TMD systems. In …


Optimizing Optical Switching Of Non-Linear Optimizing Optical Switching Of Non-Linear Hyperbolic Metamaterials, James A. Ethridge Sep 2022

Optimizing Optical Switching Of Non-Linear Optimizing Optical Switching Of Non-Linear Hyperbolic Metamaterials, James A. Ethridge

Theses and Dissertations

Modern optical materials are engineered to be used as optical devices in specific applications, such as optical computing. For optical computing, efficient forms of a particular device, the optical switch, still have not been successfully demonstrated. This problem is addressed in this research through the use of designed optical metamaterials, specifically, hyperbolic metamaterials, which offer the possibility of large non-linear properties with a low switching intensity. One-dimensional layered hyperbolic metamaterials composed of alternating layers of metal and dielectric were used here, with ITO as the metal and SiO2 as the dielectric. The non-linear behavior of the ITO/SiO2 layered …


Design And Characterization Of Frequency Tripling Mirrors, Amir Khabbazi Oskouei Apr 2022

Design And Characterization Of Frequency Tripling Mirrors, Amir Khabbazi Oskouei

Optical Science and Engineering ETDs

Aperiodic stacks of dielectric low- and high-index films can be designed to enhance third-harmonic generation (THG) in reflection of near infrared laser pulses using computer optimization. Numerical and analytical results suggest that the TH energy increases rapidly with increasing number of films and the ratio of the high and low index.

Our optical matrix based THG model that takes into account the full pulse bandwidth predicts conversion efficiencies of about 7% for transform-limited Gaussian pulse bandwidths of 16 nm for mirrors with 45 layers, which exceed those expected from periodic designs. Stability against film thickness fluctuations expected from the deposition …


Femtosecond Pulse Compression Via Self-Phase Modulation In 1-Decanol, Jacob A. Stephen Jan 2022

Femtosecond Pulse Compression Via Self-Phase Modulation In 1-Decanol, Jacob A. Stephen

Electronic Theses and Dissertations

Ultrafast science is a branch of photonics with far reaching applications in and outside the realm of physics. Ultrashort laser pulses on the order of femtoseconds (1 fs = 1 × 10−15 s) are widely used for ultrafast science. Many lasers can produce pulses on the order of 100 fs, with state of the art, high end lasers being capable of producing pulses around 30 fs. However, many experiments require pulses around 10 fs or shorter. Femtosecond pulses are typically generated using spectral broadening via self-phase modulation, followed by dispersion compensation. The most common spectral broadening technique exploits the nonlinear …