Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Effects Of Fabrication Errors On The Focusing Performance Of A Sector Metalens, S. S. Stafeev, A. G. Nalimov, Liam O’Faolain, M. V. Kotlyar Nov 2018

Effects Of Fabrication Errors On The Focusing Performance Of A Sector Metalens, S. S. Stafeev, A. G. Nalimov, Liam O’Faolain, M. V. Kotlyar

Cappa Publications

Using e-beam lithography, a 16-sector spiral metalens was fabricated in an amorphous silicon, capable of converting linearly polarized incident light into an azimuthally polarized optical vortex. When illuminated by a 633-nm linearly polarized laser beam, the metalens generated a near-surface subwavelength focal spot equal to 0.75 of the incident wavelength at full-width of half-maximum intensity. The focusing performance of the spiral metalens was numerically shown to be sensitive to the deviation of the factual microrelief from the calculated height. For the designed microrelief height, a circularly polarized incident beam was focused into a bright ring with a reverse energy flow …


Novel Faraday Rotation Effects Observed In Ultra-Thin Iron Garnet Films, Brandon Blasiola Jan 2018

Novel Faraday Rotation Effects Observed In Ultra-Thin Iron Garnet Films, Brandon Blasiola

Dissertations, Master's Theses and Master's Reports

Recent work performed by A. Chakravarty and M. Levy showed experimentally a dramatic increase in the specific Faraday Rotation (FR) of the iron garnet Bi0.8Lu0.2Gd2Fe5O12. A theoretical model, based purely on classical electrodynamics, attempting to explain this behavior was developed by colleagues in Russia that not only confirmed the asymptotic increase in the specific FR at sub-50nm film thicknesses but also suggested that the specific FR should exhibit significant fluctuations at sub-500 nm film thicknesses. The original data points were widespread with steps of 50 nm or more between data …


Photonic Grating Coupler Designs For Optical Benching, Eng Wen Ong Jan 2018

Photonic Grating Coupler Designs For Optical Benching, Eng Wen Ong

Legacy Theses & Dissertations (2009 - 2024)

Background: Silicon Photonics has been rapidly developing as a field. The primary reason for this is its lower operating costs and faster switching rates for use in big data centres. Instead of microns-wide copper lines to transmit signals, silicon photonic chips use waveguides, usually of silicon or silicon nitride. Photonic signals bypass the issues of resistive-capacitance lag (RC-lag) and resistive-heating encountered by copper lines. Additionally, a single waveguide may transmit multiple signals along different carrier wavelengths.