Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Phase Gradient Algorithm Method For 3-D Holographic Ladar Imaging, Jason W. Stafford, Bradley D. Duncan, David J. Rabb Aug 2016

Phase Gradient Algorithm Method For 3-D Holographic Ladar Imaging, Jason W. Stafford, Bradley D. Duncan, David J. Rabb

Bradley D. Duncan

3-D holographic ladar uses digital holography with frequency diversity to add the ability to resolve targets in range. A key challenge is that since individual frequency samples are not recorded simultaneously, differential phase aberrations may exist between them making it difficult to achieve range compression. We describe steps specific to this modality so that phase gradient algorithms (PGA) can be applied to 3-D holographic ladar data for phase corrections across multiple temporal frequency samples. Substantial improvement of range compression is demonstrated with a laboratory experiment where our modified PGA technique is applied. Additionally, the PGA estimator is demonstrated to be …


Phase Gradient Algorithm Method For 3-D Holographic Ladar Imaging, Jason W. Stafford, Bradley D. Duncan, David J. Rabb Jun 2016

Phase Gradient Algorithm Method For 3-D Holographic Ladar Imaging, Jason W. Stafford, Bradley D. Duncan, David J. Rabb

Electro-Optics and Photonics Faculty Publications

3-D holographic ladar uses digital holography with frequency diversity to add the ability to resolve targets in range. A key challenge is that since individual frequency samples are not recorded simultaneously, differential phase aberrations may exist between them making it difficult to achieve range compression. We describe steps specific to this modality so that phase gradient algorithms (PGA) can be applied to 3-D holographic ladar data for phase corrections across multiple temporal frequency samples. Substantial improvement of range compression is demonstrated with a laboratory experiment where our modified PGA technique is applied. Additionally, the PGA estimator is demonstrated to be …


Digital Integral Cloaking, Joseph S. Choi, John C. Howell May 2016

Digital Integral Cloaking, Joseph S. Choi, John C. Howell

Mathematics, Physics, and Computer Science Faculty Articles and Research

Toward the goal of achieving broadband and omnidirectional invisibility, we propose a method for practical invisibility cloaking. We call this “digital cloaking,” where space, angle, spectrum, and phase are discretized. Experimentally, we demonstrate a two-dimensional (2D) planar, ray optics, digital cloak by using lenticular lenses, similar to “integral imaging” for three-dimensional (3D) displays. Theoretically, this can be extended to a good approximation of an “ideal” 3D cloak. With continuing improvements in commercial digital technology, the resolution limitations of a digital cloak can be minimized.