Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Optics

Theses/Dissertations

2011

Institution
Keyword
Publication

Articles 1 - 30 of 47

Full-Text Articles in Physics

Background-Oriented Schlieren Pattern Optimization, Jeffery E. Hartberger Dec 2011

Background-Oriented Schlieren Pattern Optimization, Jeffery E. Hartberger

Theses and Dissertations

This paper describes a test series to investigate background patterns used for the Background-Oriented Schlieren field density measurement technique. Several varying background patterns were substituted under similar fluid density conditions to visualize and isolate the effects of patterns in the background images. A qualitative comparison was completed of the flow visualization results of each background pattern to categorize background conditions that improved the flow visualization image. Changes in background patterns revealed significant changes in flow visualization. Pattern contrast, spacing and sizing all played large parts in the quality of the visual density gradient imaging during the test series.


Quantum Coherence And Interference In Metallic Photonic Crystals And Hybrid Systems, Ali Hatef Dec 2011

Quantum Coherence And Interference In Metallic Photonic Crystals And Hybrid Systems, Ali Hatef

Electronic Thesis and Dissertation Repository

In the first part of the thesis, we study the absorption coefficient of quantum dots doped in metallic photonic crystals under different circumferences. We study numerically the temporal evolution of the absorption coefficient profile where a probe field is applied to monitor the absorption process in two cases, when quantum dots are embedded lightly and densely. We also studied the effect of a changing plasma frequency on the absorption profile of quantum dots two possible field configurations. We show that the changes in plasma energy can take the system from the absorption region to the transparent and gain region.

As …


Water Ice Films In Cryogenic Vacuum Chambers, Jesse Michael Labello Dec 2011

Water Ice Films In Cryogenic Vacuum Chambers, Jesse Michael Labello

Doctoral Dissertations

The space simulation chambers at Arnold Engineering Development Complex (AEDC) allow for the testing and calibration of seeker sensors in cryogenic, high vacuum environments. During operation of these chambers, contaminant films can form on the components in the chamber and disrupt operation. Although these contaminant films can be composed of many molecular species, depending on the species outgassed by warm chamber components and any leaks or virtual leaks (pockets of gas trapped within a vacuum chamber) that may be present, water vapor is most common, and it will be the focus of this dissertation. In this dissertation, some properties of …


Spectroscopic Studies Of Melamine At High Pressure, Martin Donald Galley Dec 2011

Spectroscopic Studies Of Melamine At High Pressure, Martin Donald Galley

UNLV Theses, Dissertations, Professional Papers, and Capstones

We have performed mid- and far- Infra Red (IR) absorption, Raman spectroscopy, and angular dispersive x-ray diffraction (XRD) studies on melamine under high pressure and room temperature. We have verified the presence of two prior reported phase transitions, the first between 1-2 GPa, and the second between 7-9 GPa. We have also found evidence of a third unreported phase transition between 14-16 GPa, during which, there was a sudden disappearance of all low energy peaks (-1 ) in both the Raman and IR spectra. The far-IR peak movement experiences a discontinuity as the rate of peak movement suddenly changes. …


Achieving Laser Wavelength Stability For Use In Neutral Atom Quantum Computing, Jennifer H. Rushing Dec 2011

Achieving Laser Wavelength Stability For Use In Neutral Atom Quantum Computing, Jennifer H. Rushing

Physics

Quantum computing may still be decades away from realization but the pieces necessary for the construction of the first quantum chip are beginning to come together. One piece still eluding researchers is the ability to address individual atoms within a scalable quantum chip structure. The resolution to this issue may be found in any one of several promising implementations, including the use of neutral atoms trapped in 2D optical lattices. One method of constructing such lattices, which has been shown to be computationally viable, employs the diffraction pattern just behind a circular aperture. Laser wavelength stability plays a crucial role …


Wavelength Dependence Of Transverse Mode Coupling With/Without E-Block Of Gan Laser Cavity, Krishneel Lal Nov 2011

Wavelength Dependence Of Transverse Mode Coupling With/Without E-Block Of Gan Laser Cavity, Krishneel Lal

Electrical Engineering

No abstract provided.


Modeling Self-Referencing Interferometers With Extended Beacons And Strong Turbulence, Daniel J. Wheeler Sep 2011

Modeling Self-Referencing Interferometers With Extended Beacons And Strong Turbulence, Daniel J. Wheeler

Theses and Dissertations

The overall purpose of this research was to better understand the performance of a self-referencing interferometer (SRI) when used with extended beacons in strong atmospheric turbulence. It was performed by assuming the extended beacon could be modeled as a Gaussian Schell-model beam, then analyzing the effect of propagating this beam through strong atmospheric turbulence. Since the operation of an SRI requires coupling this light into a single-mode optical fiber, analytic expressions of the mean and normalized variance of the coupling efficiency were derived. An improved noise model for the SRI was then developed that included all potential noise sources such …


Integrated Approach To Free Space Optical Communications In Strong Turbulence, Jason A. Tellez Sep 2011

Integrated Approach To Free Space Optical Communications In Strong Turbulence, Jason A. Tellez

Theses and Dissertations

The propagation of a free space optical communication signal through atmospheric turbulence experiences random fluctuations in intensity, including signal fades which negatively impact the communications link performance. This research develops an analytical probability density function (PDF) to model the best case scenario of using multiple independent beams to reduce the intensity fluctuations. The PDF was further developed to account for partially correlated beams, such as would be experienced by beams having finite separation. The PDF was validated with results obtained from digital simulations as well as lab experiments. The research showed that as the number of transmitted beams increases the …


Projection Of Diffracted Optical Atom Traps, Jeremy Kruger Sep 2011

Projection Of Diffracted Optical Atom Traps, Jeremy Kruger

Physics

Theoretical calculations were performed for the projection of a diffraction pattern created by a pinhole through a single-lens system using vector diffraction theory and a combination of programs (MathCAD, Igor, etc.). The projected diffraction patterns were then experimentally created, recorded, and analyzed. This work is part of a larger collaboration with Dr. Kat Gillen, to trap and manipulate atoms in a Magneto Optical Trap (MOT) and to make further steps in the direction of Quantum Computing using trapped neutral atoms.


Rational Design And Advanced Fabrication Of Metallic Nanostructures For Surface-Enhanced Raman Spectroscopy, Betty Cristina Galarreta Aug 2011

Rational Design And Advanced Fabrication Of Metallic Nanostructures For Surface-Enhanced Raman Spectroscopy, Betty Cristina Galarreta

Electronic Thesis and Dissertation Repository

One of the main challenges in analytical science and technology is to develop devices that provide unambiguously the chemical nature of the material of interest with the minimum intrusiveness, the smallest amount of analyte, and the shortest acquisition time. Among the promising methods for such purpose, optical spectroscopy such as surface-enhanced Raman scattering is considered a suitable option. This spectroscopic technique takes advantage of the interaction between an optical field and metallic nanostructures to magnify the electromagnetic field in the vicinity of the nanostructure, resulting in an amplified signal of the vibrational fingerprints of the adsorbed molecules onto the metallic …


Monte Carlo Simulations Of Single-Molecule Fluorescence Detection Experiments, William Neil Robinson Aug 2011

Monte Carlo Simulations Of Single-Molecule Fluorescence Detection Experiments, William Neil Robinson

Doctoral Dissertations

Several Monte Carlo simulations of single-molecule fluorescence systems are developed to help evaluate and improve ongoing experiments. In the first simulation, trapping of a single molecule in a nanochannel is studied. Molecules move along the nanochannel by diffusion and electrokinetic flow. Single-molecule fluorescence signals excited by two spatially offset laser beams are detected and the direction of the flow is adjusted to try to equalize the signals and center the molecule between the beams. An algorithm is evaluated for trapping individual molecules in succession by rapidly reloading the trap after a molecule photobleaches or escapes. This is shown to be …


Quantitative Binocular Assessment Using Infrared Video Photoscreening, Lei Shi Aug 2011

Quantitative Binocular Assessment Using Infrared Video Photoscreening, Lei Shi

Doctoral Dissertations

Photorefraction is a technique that has been used in the past two decades for pediatric vision screening. The technique uses a digital or photographic camera to capture the examinee‟s retinal reflex from a light source that is located near the camera‟s lens. It has the advantages of being objective, binocular and low cost, which make it a good candidate for pediatric screening when compared to other methods. Although many children have been screened using this technique in the U.S., its sensitivity and other disadvantages make it unacceptable for continued use. The Adaptive Photorefraction system (APS) was developed at the Center …


Excitation-Induced Ge Quantum Dot Growth On Si(100)-2x1 By Pulsed Laser Deposition, Ali Oguz Er Jul 2011

Excitation-Induced Ge Quantum Dot Growth On Si(100)-2x1 By Pulsed Laser Deposition, Ali Oguz Er

Physics Theses & Dissertations

Self-assembled Ge quantum dots (QD) are grown on Si(100)-(2×1) with laser excitation during growth processes by pulsed laser deposition (PLD). In situ reflection-high energy electron diffraction (RHEED) and post-deposition atomic force microscopy (AFM) are used to study the growth dynamics and morphology of the QDs. A Q-switched Nd:YAG laser (λ = 1064 nm, 40 ns pulse width, 5 J/cm2 fluence, and 10 Hz repetition rate) were used to ablate germanium and irradiate the silicon substrate. Ge QD formation on Si(100)-(2×1) with different substrate temperatures and excitation laser energy densities was studied. The excitation laser reduces the epitaxial growth temperature …


Optical Flow-Based Odometry For Underground Tunnel Exploration, Terra Kier Jun 2011

Optical Flow-Based Odometry For Underground Tunnel Exploration, Terra Kier

Theses and Dissertations

As military operations in degraded or GPS-denied environments continue to increase in frequency and importance, there is an increased necessity to be able to determine precision location within these environments. Furthermore, authorities are finding a record number of tunnels along the U.S.-Mexico border; therefore, underground tunnel characterization is becoming a high priority for U.S. Homeland Security as well. This thesis investigates the performance of a new image registration technique based on a two camera optical- flow configuration using phase correlation techniques. These techniques differ from other image based navigation methods but present a viable alternative increasing autonomy and answering the …


Estimating Anthropometric Marker Locations From 3-D Ladar Point Clouds, Matthew J. Maier Jun 2011

Estimating Anthropometric Marker Locations From 3-D Ladar Point Clouds, Matthew J. Maier

Theses and Dissertations

An area of interest for improving the identification portion of the system is in extracting anthropometric markers from a Laser Detection and Ranging (LADAR) point cloud. Analyzing anthropometrics markers is a common means of studying how a human moves and has been shown to provide good results in determining certain demographic information about the subject. This research examines a marker extraction method utilizing principal component analysis (PCA), self-organizing maps (SOM), alpha hulls, and basic anthropometric knowledge. The performance of the extraction algorithm is tested by performing gender classification with the calculated markers.


Laser-Induced Breakdown Spectroscopy, Connor Drake Jun 2011

Laser-Induced Breakdown Spectroscopy, Connor Drake

Physics

The goal of this work is to use a Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) Laser, spectrometer, and computer to create a Laser Induced Breakdown Spectroscopy (LIBS) system. LIBS utilizes a focused, high-powered, pulsed laser whose peak electric field ionizes materials at the beam focal point, creating localized plasma. The plasma state includes broken molecular bonds, atom/electron-ionization, and excited electrons, which on the macroscopic level is a loud “snap” and a bright spark. In this project, a fiber optic cable is used to capture light emitted from the spark, and direct it into a spectrometer which tallies the number of photons …


Projected Pinhole Diffraction, David Moore Jun 2011

Projected Pinhole Diffraction, David Moore

Physics

The goal of this experiment was to observe the effects of passing light through a pinhole, more specifically, to observe the interference and diffraction that occurs due to the pinhole and to successfully achieve CCD camera recording of a projected diffraction pattern from a pinhole. This experiment involved the diffraction of a laser incident upon a 100-mm diameter circular aperture. The diffraction pattern is then projected using a 100-mm focal length plano-convex lens. The lens allows for the pattern to be magnified and stretched a few focal lengths past the lens where it can be then viewed using a CCD …


Saturated Absorption For A Magneto-Optical Atom Trap As A Step Toward Atomic Dipole Traps In A Diffraction Pattern From A Circular Aperture, Andrew Ferdinand Jun 2011

Saturated Absorption For A Magneto-Optical Atom Trap As A Step Toward Atomic Dipole Traps In A Diffraction Pattern From A Circular Aperture, Andrew Ferdinand

Physics

Neutral atom quantum computing is a promising avenue toward the realization of a physical quantum computer. The diffraction pattern formed by laser light immediately behind a circular aperture can be used as optical atomic dipole traps, and has the potential to be scaled up to create a two dimensional array of individually addressable qubit sites. In working towards experimental demonstration of the dipole traps, we are constructing a MOT. The function of the MOT is to cool and trap 87Rb in a localized cloud in our vacuum chamber, which will be used to load the dipole traps. One critical …


Ultrafast High-Energy Electron Diffraction Study Of Photoexcited Bismuth Nanoclusters By Femtosecond Laser Pulses, Ahmed R. Esmail Apr 2011

Ultrafast High-Energy Electron Diffraction Study Of Photoexcited Bismuth Nanoclusters By Femtosecond Laser Pulses, Ahmed R. Esmail

Electrical & Computer Engineering Theses & Dissertations

The advancement in ultrafast electron crystallography (UEC) over the past few decades facilitated the study of structural dynamics in all phases of matter induced by femtosecond laser pulses. This technique became very powerful when the spatial resolution was combined with the temporal resolution, and succeeded in studying chemical reactions by ultrafast electron diffraction, bulk crystal phonons and melting by X-ray diffraction.

In this dissertation, I demonstrate the uniqueness of UEC and its potential in monitoring in real time the structural dynamics of bismuth (Bi) nanoclusters and islands induced by femtosecond laser pulses. Our approach to accomplish this task includes building …


Development Of An Interference Lithography Capability Using A Helium Cadmium Ultraviolet Multimode Laser For The Fabrication Of Sub-Micron-Structured Optical Materials, Stanley D. Crozier Mar 2011

Development Of An Interference Lithography Capability Using A Helium Cadmium Ultraviolet Multimode Laser For The Fabrication Of Sub-Micron-Structured Optical Materials, Stanley D. Crozier

Theses and Dissertations

The goal of this work is to develop unique holograms on a semiconductor-metal thin films to characterize as potential metamaterials. This is achievable by developing a fabrication recipe to include exposure methods, exposure dosages, and material development. This study developed an interference lithography capability at AFIT for the first time with period resolution below 230nm. It also identified initial acceptable photoresist materials and exposure dosages, and a path to follow to optimize this process. The potential impact of this is to make IL a standard in optical meta-material fabrication, which decreases manufacturing time and allows for less error in production. …


Effect Of Coudé Pupil Rotation On Sodium Laser Beacon Perspective Elongation, Russell J. Mcguigan Mar 2011

Effect Of Coudé Pupil Rotation On Sodium Laser Beacon Perspective Elongation, Russell J. Mcguigan

Theses and Dissertations

This research models a sodium laser guide star and its measurement by a Shack-Hartmann wavefront sensor. By predicting the extent of beacon elongation and Coude rotation, reference images are produced for each subaperture throughout an engagement scenario. These reference sources are then used to continuously recalibrate the system as it changes orientation. This model measures the effect of perspective elongation and Coude on SHWFS measurements to quantitatively determine the extent of degradation that occurs.


Shack-Hartmann And Interferometric Hybrid Wavefront Sensor, Troy R. Ellis Mar 2011

Shack-Hartmann And Interferometric Hybrid Wavefront Sensor, Troy R. Ellis

Theses and Dissertations

This document reports results of wave-optics simulations used to test the performance of a hybrid wavefront sensor designed to combine the self-referencing interferometer and Shack-Hartmann wavefront sensors in an optimal way. Optimal hybrid-wavefront sensor design required a thorough analysis of the noise characteristics of each wavefront sensor to produce noise models that assist in the design of an optimal phase-estimation algorithm. Feasible architectures and algorithms for combining wavefront sensors were chosen, and the noise models of the individual wavefront sensors were combined to form a model for the noise-induced error of the resulting hybrid sensor. The hybrid wavefront sensor and …


Optical And Electrical Characterization Melt-Grown Bulk Ingaas And Inasp, Jean W. Wei Mar 2011

Optical And Electrical Characterization Melt-Grown Bulk Ingaas And Inasp, Jean W. Wei

Theses and Dissertations

A new method to determine semiconductor bandgap energy directly from the easily measured transmission spectra was developed. The method was verified using many binary semiconductors with known properties and utilized to determine the unknown ternary semiconductors were determined at various wavelengths and temperatures. Photoluminescence and Hall-effect measurement were performed to identify various electronic transitions, as well as sample quality. The determination of electrical and optical properties of the material will provide important addition to the database of material properties for future optoelectronic device applications. In the near future, newer materials and their applications need to be developed, and often binary …


Optical Metamaterial Design, Fabrication And Test, Jack P. Lombardi Mar 2011

Optical Metamaterial Design, Fabrication And Test, Jack P. Lombardi

Theses and Dissertations

Metamaterials, materials that make use of naturally occurring materials and designed structures to create materials with special properties not found in nature, are a fascinating new area of research, combining the fields of physics, microfabrication, and material science. This work will focus on the development of metamaterials operating in the visible and infrared which will be constructed and tested for basic optical properties. Possible applications for these materials will not be investigated. The this work will go into the fabrication and test of layered metal-dielectric structures, called layered metamaterials, as these structures hold potential for applications in advanced optical systems. …


Diffusion Of Rubidium Vapor Through Hollow-Core Fibers For Gas-Phase Fiber Lasers, Eric M. Guild Mar 2011

Diffusion Of Rubidium Vapor Through Hollow-Core Fibers For Gas-Phase Fiber Lasers, Eric M. Guild

Theses and Dissertations

This work examines the diffusion of rubidium through a small diameter tube alone and in the presence of noble gases. A fluid dynamics analysis is investigated to aid in choosing a method for transferring atomic rubidium vapor that is reliable and efficient. Solutions to the time dependant ordinary differential equation describing the experimental flow properties of the system reveal more precise outcomes than previously practiced routines. Resolved viscosities and Poiseuille flow theory velocity profile distributions are characterized for noble gas carriers of the rubidium vapor. Applying Reynolds Numbers to the flow experiments provides pressure differential boundaries that are employed in …


Branch Point Mitigation Of Thermal Blooming Phase Compensation Instability, Mark F. Spencer Mar 2011

Branch Point Mitigation Of Thermal Blooming Phase Compensation Instability, Mark F. Spencer

Theses and Dissertations

Thermal blooming can have a major impact on high-energy laser (HEL) beam propagation in the atmosphere. In theory, an adaptiveoptics (AO) system can mitigate the nonlinear optical effects induced by thermal blooming; however, when a single deformable mirror is used for phase-only compensation, analysis predicts the possibility of instability. This instability is appropriately termed phase compensation instability (PCI) and arises with the time-dependent development of spatial perturbations found within the HEL beam. These spatial perturbations act as local hot spots that produce negative-lens-like optical effects in the atmosphere. An AO system corrects for the hot spots by applying positive-lens-like phase …


Simulating The Effects Of An Extended Source On The Shack-Hartmann Wavefront Sensor Through Turbulence, Jeffery S. Dennison Mar 2011

Simulating The Effects Of An Extended Source On The Shack-Hartmann Wavefront Sensor Through Turbulence, Jeffery S. Dennison

Theses and Dissertations

Perspective elongation in Shack-Hartmann wavefront sensor (SHWFS) spots is a phenomenon caused by an extended three-dimensional scattering beacon in the mesosphere (80-100km). Elongated spots cause errors in wavefront sensor measurements, which leads to poor turbulence compensation and decreased image resolution of the optical system. In order to compensate for elongated spots, a proper beacon model must be developed to simulate the error. In this paper, a documented theory for modeling an elongated sodium beacon and elongated SHWFS spots using sodium layer slices was tested. It was found that nine evenly-spaced slices were adequate to model the elongated beacon in the …


A Statistical Approach To Fusing 2-D And 3-D Ladar Systems, Paul F. Dolce Mar 2011

A Statistical Approach To Fusing 2-D And 3-D Ladar Systems, Paul F. Dolce

Theses and Dissertations

LADAR (LAser Detection and Ranging) systems can be used to provide 2-D and 3-D images of scenes. Generally, 2-D images possess superior spatial resolution but without range data due to the density of their focal plane arrays. A 3-D LADAR system can produce range to target data at each pixel, but lacks the 2-D system's superior spatial resolution. The 3-D system is limited by its hardware, specifically its imaging array. Currently developers are investigating ways to change the pixel size in the 3-D LADAR imaging array, but the costs of this research is quite expensive and technically robust. It is …


A Multispectral Bidirectional Reflectance Distribution Function Study Of Human Skin For Improved Dismount Detection, Bradley M. Koch Mar 2011

A Multispectral Bidirectional Reflectance Distribution Function Study Of Human Skin For Improved Dismount Detection, Bradley M. Koch

Theses and Dissertations

In 2008, the Sensors Exploitation Research Group at the Air Force Institute of Technology began using spectral properties of skin for the detection and classification of humans. Since then a multispectral skin detection system was developed to exploit the optical properties of human skin at wavelengths in the visible and near infrared region of the electromagnetic spectrum. A rules-based detector, analyzing an image spectrally, currently bases its skin pixel selection criteria on a diffuse skin reflectance model. However, when observing skin in direct view of the sun, a glint of light off skin is common and indicates specularity. The areas …


Polarimetric Enhancements To Electro-Optical Aided Navigation Techniques, Jeremiah D. Johnson Mar 2011

Polarimetric Enhancements To Electro-Optical Aided Navigation Techniques, Jeremiah D. Johnson

Theses and Dissertations

Navigation in indoor and urban environments by small unmanned systems is a topic of interest for the Air Force. The Advanced Navigation Technology Center at the Air Force Institute of Technology is continually looking for novel approaches to navigation in GPS deprived environments. Inertial sensors have been coupled with image aided concepts, such as feature tracking, with good results. However, feature density in areas with large, flat, smooth surfaces tends to be low. Polarimetric sensors have been used for surface reconstruction, surface characterization and outdoor navigation. This thesis combines aspects of some of these algorithms along with a realistic, micro-facet …