Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Utilizing Inverse Design To Create Plasmonic Waveguide Devices, Michael Efseaff, Kyle Wynne, Mark C. Harrison Mar 2023

Utilizing Inverse Design To Create Plasmonic Waveguide Devices, Michael Efseaff, Kyle Wynne, Mark C. Harrison

Engineering Faculty Articles and Research

In modern communications networks, data is transmitted over long distances using optical fibers. At nodes in the network, the data is converted to an electrical signal to be processed, and then converted back into an optical signal to be sent over fiber optics. This process results in higher power consumption and adds to transmission time. However, by processing the data optically, we can begin to alleviate these issues and surpass systems which rely on electronics. One promising approach for this is plasmonic devices. Plasmonic waveguide devices have smaller footprints than silicon photonics for more compact photonic integrated circuits, although they …


Resonant Plasmonic–Biomolecular Chiral Interactions In The Far-Ultraviolet: Enantiomeric Discrimination Of Sub-10 Nm Amino Acid Films, Tiago Ramos Leite, Lin Zschiedrich, Orhan Kizilkaya, Kevin M. Mcpeak Sep 2022

Resonant Plasmonic–Biomolecular Chiral Interactions In The Far-Ultraviolet: Enantiomeric Discrimination Of Sub-10 Nm Amino Acid Films, Tiago Ramos Leite, Lin Zschiedrich, Orhan Kizilkaya, Kevin M. Mcpeak

Faculty Publications

Resonant plasmonic–molecular chiral interactions are a promising route to enhanced biosensing. However, biomolecular optical activity primarily exists in the far-ultraviolet regime, posing significant challenges for spectral overlap with current nano-optical platforms. We demonstrate experimentally and computationally the enhanced chiral sensing of a resonant plasmonic–biomolecular system operating in the far-UV. We develop a full-wave model of biomolecular films on Al gammadion arrays using experimentally derived chirality parameters. Our calculations show that detectable enhancements in the chiroptical signals from small amounts of biomolecules are possible only when tight spectral overlap exists between the plasmonic and biomolecular chiral responses. We support this conclusion …


Plasmonic Waveguides To Enhance Quantum Electrodynamic Phenomena At The Nanoscale, Ying Li, Christos Argyropoulos Feb 2021

Plasmonic Waveguides To Enhance Quantum Electrodynamic Phenomena At The Nanoscale, Ying Li, Christos Argyropoulos

Department of Electrical and Computer Engineering: Faculty Publications

The emerging field of plasmonics can lead to enhanced light-matter interactions at extremely nanoscale regions. Plasmonic (metallic) devices promise to efficiently control both classical and quantum properties of light. Plasmonic waveguides are usually used to excite confined electromagnetic modes at the nanoscale that can strongly interact with matter. The analysis of these nanowaveguides exhibits similarities with their low frequency microwave counterparts. In this article, we review ways to study plasmonic nanostructures coupled to quantum optical emitters from a classical electromagnetic perspective. These quantum emitters are mainly used to generate single-photon quantum light that can be employed as a quantum bit …


Combined Experimental And Modeling Analysis For Thedevelopment Of Optical Materials Suitable To Enhance Theimplementation Of Plasmonic-Enhanced Luminescent Down-Shifting Solutions On Existing Silicon-Based Photovoltaic Devices, James Walshe, Mihaela Girtan, Sarah Mccormack, John Doran, George Amarandei Jan 2021

Combined Experimental And Modeling Analysis For Thedevelopment Of Optical Materials Suitable To Enhance Theimplementation Of Plasmonic-Enhanced Luminescent Down-Shifting Solutions On Existing Silicon-Based Photovoltaic Devices, James Walshe, Mihaela Girtan, Sarah Mccormack, John Doran, George Amarandei

Articles

The development of highly efficient solar collectors requires modulating the light interactions with the semiconducting materials. Incorporating luminescent species and metal nanoparticles within a semitransparent polymeric material (e.g., polymethyl methacrylate (PMMA)) leads to the formation of a plasmon-enhanced luminescent down-shifting (PLDS) layer, which offers a retrofittable approach toward expanding the wavelength range over which the conversion process can effectively occur. Adding antireflection coatings (ARCs) further controls the spectral response. However, with each additional component comes additional loss pathways. In this study, the losses related to light interactions with the PMMA and the ARCs have been investigated theoretically using a transfer …


A Hybrid Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Sarah K. Lami, J. Todd Hastings Aug 2020

A Hybrid Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Sarah K. Lami, J. Todd Hastings

Electrical and Computer Engineering Faculty Publications

Metalenses, ultra-thin optical elements that focus light using subwavelength structures, have been the subject of a number of recent investigations. Compared to their refractive counterparts, metalenses offer reduced size and weight, and new functionality such as polarization control. However, metalenses that correct chromatic aberration also suffer from markedly reduced focusing efficiency. Here we introduce a Hybrid Achromatic Metalens (HAML) that overcomes this trade-off and offers improved focusing efficiency over a broad wavelength range from 1000-1800 nm. HAMLs can be designed by combining recursive ray-tracing and simulated phase libraries rather than computationally intensive global search algorithms. Moreover, HAMLs can be fabricated …


Multi-Level Surface Enhanced Raman Scattering Using AgoX Thin Film, Ming Lun Tseng, Chia Min Chang, Bo Han Cheng, Pin Chieh Wu, K. S. Chung, M. K. Hsiao, H. W. Huang, D. W. Huang, Hai-Pang Chiang, P.T. Leung, D. P. Tsai Oct 2013

Multi-Level Surface Enhanced Raman Scattering Using AgoX Thin Film, Ming Lun Tseng, Chia Min Chang, Bo Han Cheng, Pin Chieh Wu, K. S. Chung, M. K. Hsiao, H. W. Huang, D. W. Huang, Hai-Pang Chiang, P.T. Leung, D. P. Tsai

Physics Faculty Publications and Presentations

Ag nanostructures with surface-enhanced Raman scattering (SERS) activities have been fabricated by applying laser-direct writing (LDW) technique on silver oxide (AgOx) thin films. By controlling the laser powers, multi-level Raman imaging of organic molecules adsorbed on the nanostructures has been observed. This phenomenon is further investigated by atomic-force microscopy and electromagnetic calculation. The SERS-active nanostructure is also fabricated on transparent and flexible substrate to demonstrate our promising strategy for the development of novel and low-cost sensing chip.


Practicality Of Compensating The Loss In The Plasmonic Waveguides Using Semiconductor Gain Medium, Jacob B. Khurgin, Greg Sun Jan 2012

Practicality Of Compensating The Loss In The Plasmonic Waveguides Using Semiconductor Gain Medium, Jacob B. Khurgin, Greg Sun

Physics Faculty Publications

We consider the issue of compensating the loss in plasmonic waveguides with semiconductor gain material and show that, independent of specific geometry, full loss compensation in plasmonic waveguides with significantly sub-wavelength light confinement (less than λ/4n) requires current density well in excess of 100 kA/cm2. This high current density is attributed to the unavoidable shortening of recombination time caused by the Purcell effect inherent to sub-wavelength confinement. Consequently, an injection-pumped plasmonic laser that is truly sub-wavelength in all three dimensions (“spaser”) would have threshold current densities that are hard to obtain in any conceivable semiconductor device.


How Much Can Guided Modes Enhance Absorption In Thin Solar Cells?, Peter N. Saeta, Vivian E. Ferry, Domenico Pacifici, Jeremy N. Munday, Harry A. Atwater Nov 2009

How Much Can Guided Modes Enhance Absorption In Thin Solar Cells?, Peter N. Saeta, Vivian E. Ferry, Domenico Pacifici, Jeremy N. Munday, Harry A. Atwater

All HMC Faculty Publications and Research

Absorption enhancement in thin metal-backed solar cells caused by dipole scatterers embedded in the absorbing layer is studied using a semi-analytical approach. The method accounts for changes in the radiation rate produced by layers above and below the dipole, and treats incoherently the subsequent scattering of light in guided modes from other dipoles. We find large absorption enhancements for strongly coupled dipoles, exceeding the ergodic limit in some configurations involving lossless dipoles. An antireflection-coated 100-nm layer of a-Si:H on Ag absorbs up to 87% of incident above-gap light. Thin layers of both strong and weak absorbers show similar strongly enhanced …