Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Optics

Series

2020

Institution
Keyword
Publication
File Type

Articles 1 - 30 of 62

Full-Text Articles in Physics

Conditional Generative Adversarial Network Demosaicing Strategy For Division Of Focal Plane Polarimeters, Garrett Sargent, Bradley M. Ratliff, Vijayan K. Asari Dec 2020

Conditional Generative Adversarial Network Demosaicing Strategy For Division Of Focal Plane Polarimeters, Garrett Sargent, Bradley M. Ratliff, Vijayan K. Asari

Electrical and Computer Engineering Faculty Publications

Division of focal plane (DoFP), or integrated microgrid polarimeters, typically consist of a 2 × 2 mosaic of linear polarization filters overlaid upon a focal plane array sensor and obtain temporally synchronized polarized intensity measurements across a scene, similar in concept to a Bayer color filter array camera. However, the resulting estimated polarimetric images suffer a loss in resolution and can be plagued by aliasing due to the spatially-modulated microgrid measurement strategy. Demosaicing strategies have been proposed that attempt to minimize these effects, but result in some level of residual artifacts. In this work we propose a conditional generative adversarial …


Polarization-Selective Modulation Of Supercavity Resonances Originating From Bound States In The Continuum, Chan Kyaw, Riad Yahiaoui, Joshua A. Burrow, Viet Tran, Kyron Keelen, Wesley Sims, Eddie C. Red, Willie S. Rockward, Mikkel A. Thomas, Andrew M. Sarangan, Imad Agha, Thomas A. Searles Dec 2020

Polarization-Selective Modulation Of Supercavity Resonances Originating From Bound States In The Continuum, Chan Kyaw, Riad Yahiaoui, Joshua A. Burrow, Viet Tran, Kyron Keelen, Wesley Sims, Eddie C. Red, Willie S. Rockward, Mikkel A. Thomas, Andrew M. Sarangan, Imad Agha, Thomas A. Searles

Electro-Optics and Photonics Faculty Publications

Bound states in the continuum (BICs) are widely studied for their ability to confine light, produce sharp resonances for sensing applications and serve as avenues for lasing action with topological characteristics. Primarily, the formation of BICs in periodic photonic band gap structures are driven by symmetry incompatibility; structural manipulation or variation of incidence angle from incoming light. In this work, we report two modalities for driving the formation of BICs in terahertz metasurfaces. At normal incidence, we experimentally confirm polarization driven symmetry-protected BICs by the variation of the linear polarization state of light. In addition, we demonstrate through strong coupling …


Transfer-To-Transfer Learning Approach For Computer Aided Detection Of Covid-19 In Chest Radiographs, Barath Narayanan Narayanan, Russell C. Hardie, Vignesh Krishnaraja, Christina Karam, Venkata Salini Priyamvada Davuluru Dec 2020

Transfer-To-Transfer Learning Approach For Computer Aided Detection Of Covid-19 In Chest Radiographs, Barath Narayanan Narayanan, Russell C. Hardie, Vignesh Krishnaraja, Christina Karam, Venkata Salini Priyamvada Davuluru

Electrical and Computer Engineering Faculty Publications

The coronavirus disease 2019 (COVID-19) global pandemic has severely impacted lives across the globe. Respiratory disorders in COVID-19 patients are caused by lung opacities similar to viral pneumonia. A Computer-Aided Detection (CAD) system for the detection of COVID-19 using chest radiographs would provide a second opinion for radiologists. For this research, we utilize publicly available datasets that have been marked by radiologists into two-classes (COVID-19 and non-COVID-19). We address the class imbalance problem associated with the training dataset by proposing a novel transfer-to-transfer learning approach, where we break a highly imbalanced training dataset into a group of balanced mini-sets and …


3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim Dec 2020

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim

Faculty Publications

This paper presents 3-D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new requirements. These devices also utilize true 3-D design freedom, facilitating the realization of microscale optical elements with challenging geometries. Three different device types were fabricated and evaluated: an unreleased single-cavity device, a released dual-cavity device, and a released hemispherical mirror dual-cavity device. Each iteration improved the quality of the FP cavity's reflection spectrum. The …


Atmospheric Turbulence Study With Deep Machine Learning Of Intensity Scintillation Patterns, Artem V. Vorontsov, Mikhail A. Vorontsov, Grigorii A. Fillimonov, Ernst Polnau Nov 2020

Atmospheric Turbulence Study With Deep Machine Learning Of Intensity Scintillation Patterns, Artem V. Vorontsov, Mikhail A. Vorontsov, Grigorii A. Fillimonov, Ernst Polnau

Electro-Optics and Photonics Faculty Publications

A new paradigm for machine learning-inspired atmospheric turbulence sensing is developed and applied to predict the atmospheric turbulence refractive index structure parameter using deep neural network (DNN)-based processing of short-exposure laser beam intensity scintillation patterns obtained with both: experimental measurement trials conducted over a 7 km propagation path, and imitation of these trials using wave-optics numerical simulations. The developed DNN model was optimized and evaluated in a set of machine learning experiments. The results obtained demonstrate both good accuracy and high temporal resolution in sensing. The machine learning approach was also employed to challenge the validity of several eminent atmospheric …


Enhancing The Visibility Of Vernier Effect In A Tri-Microfiber Coupler Fiber Loop Interferometer For Ultrasensitive Refractive Index And Temperature Sensing, Fangfang Wei, Dejun Liu, Zhe Wang, Zhuochen Wang, Gerald Farrell, Qiang Wu, Gang-Ding Peng, Yuliya Semenova Nov 2020

Enhancing The Visibility Of Vernier Effect In A Tri-Microfiber Coupler Fiber Loop Interferometer For Ultrasensitive Refractive Index And Temperature Sensing, Fangfang Wei, Dejun Liu, Zhe Wang, Zhuochen Wang, Gerald Farrell, Qiang Wu, Gang-Ding Peng, Yuliya Semenova

Articles

In this paper a Vernier effect based sensor is analyzed and demonstrated experimentally in a tri-microfiber coupler (Tri-MFC) and polarization-maintaining fiber (PMF) loop interferometer (Tri-MFC-PMF) to provide ultrasensitive refractive index and temperature sensing. The main novelty of this work is an analysis of parameters of the proposed Tri-MFC-PMF with the objective of determining the conditions leading to a strong Vernier effect. It has been identified by simulation that the Vernier effect is a primary factor in the design of Tri-MFC-PMF loop sensing structure for sensitivity enhancement. It is furthermore demonstrated experimentally that enhancing the visibility of the Vernier spectrum in …


A Coded Aperture Microscope For X-Ray Fluorescence Full-Field Imaging, D. P. Siddons, A. J. Kuczewski, A. K. Rumaiz, R. Tappero, M Idir, K. Nakhoda, J. Khanfri, V. Singh, E. R. Farquhar, M. Sullivan, D. Abel, D. J. Brady, X. Yuan Nov 2020

A Coded Aperture Microscope For X-Ray Fluorescence Full-Field Imaging, D. P. Siddons, A. J. Kuczewski, A. K. Rumaiz, R. Tappero, M Idir, K. Nakhoda, J. Khanfri, V. Singh, E. R. Farquhar, M. Sullivan, D. Abel, D. J. Brady, X. Yuan

Faculty Publications

The design and construction of an instrument for full-field imaging of the X-ray fluorescence emitted by a fully illuminated sample are presented. The aim is to produce an X-ray microscope with a few micrometers spatial resolution, which does not need to scan the sample. Since the fluorescence from a spatially inhomogeneous sample may contain many fluorescence lines, the optic which will provide the magnification of the emissions must be achromatic, i.e. its optical properties must be energy-independent. The only optics which fulfill this requirement in the X-ray regime are mirrors and pinholes. The throughput of a simple pinhole is very …


Re-Examining The Radial Distributions Of M13 Multiple Populations, Jason P. Smolinski, Willem B. Hoogendam, Alex J. Van Kooten, Peyton Benac Nov 2020

Re-Examining The Radial Distributions Of M13 Multiple Populations, Jason P. Smolinski, Willem B. Hoogendam, Alex J. Van Kooten, Peyton Benac

University Faculty Publications and Creative Works

We seek to resolve the tension in the literature regarding the presence of radially segregated multiple populations in the Galactic globular cluster M13. Previous studies of this nearby cluster have presented discordant results about the degree of dynamical mixing in M13's inner region. Using ground-based (UBVI) photometry, we show that cumulative radial distributions of stars on the blue and red sides of the red giant branch are statistically identical. Interestingly, these results are obtained using data from large-aperture, ground-based telescopes as well as a more modestly sized instrument, and both are in agreement with previous work done using Hubble Space …


Generation Of Vector Partially Coherent Optical Sources Using Phase-Only Spatial Light Modulators, Milo W. Hyde Iv, Santasri R. Bose-Pillai Oct 2020

Generation Of Vector Partially Coherent Optical Sources Using Phase-Only Spatial Light Modulators, Milo W. Hyde Iv, Santasri R. Bose-Pillai

AFIT Patents

A vector partially coherent source (VPCS) generator includes a laser that emits coherent light; an interferometer consisting of polarizing beam splitters (PBSs) to split the laser light into its vertical and horizontal polarization components;] first and second spatial light modulators (SLMs) that respectively control the vertical and horizontal polarization components; and a control system communicatively coupled to the first and second SLMs to adjust beam shape and coherence without physically moving or removing optical elements in the interferometer.


Developing A Portable, Smartphone-Based Schlieren Imaging System, Grace Riermann, Keith R. Stein Oct 2020

Developing A Portable, Smartphone-Based Schlieren Imaging System, Grace Riermann, Keith R. Stein

Honors Student Works

Schlieren imaging is a technique for visualizing fluid flows that are characterized by spatial variations in density or refractive index. Because schlieren imaging is commonly performed with expensive equipment in a lab setting, we sought cost efficiency, accessibility, and ease of fabrication by designing a portable, smartphone-based system.


Single‐Molecule 3d Orientation Imaging Reveals Nanoscale Compositional Heterogeneity In Lipid Membranes, Jin Lu, Hesam Mazidi, Tianben Ding, Oumeng Zhang, Matthew D. Lew Sep 2020

Single‐Molecule 3d Orientation Imaging Reveals Nanoscale Compositional Heterogeneity In Lipid Membranes, Jin Lu, Hesam Mazidi, Tianben Ding, Oumeng Zhang, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

In soft matter, thermal energy causes molecules to continuously translate and rotate, even in crowded environments, thereby impacting the spatial organization and function of most molecular assemblies, such as lipid membranes. Directly measuring the orientation and spatial organization of large collections (>3000 molecules μm−2) of single molecules with nanoscale resolution remains elusive. In this paper, we utilize SMOLM, single‐molecule orientation localization microscopy, to directly measure the orientation spectra (3D orientation plus “wobble”) of lipophilic probes transiently bound to lipid membranes, revealing that Nile red's (NR) orientation spectra are extremely sensitive to membrane chemical composition. SMOLM images resolve …


Artificial Neural Network Discovery Of A Switchable Metasurface Reflector, J. R. Thompson, J. A. Burrow, P. J. Shah, J. Slagle, E. S. Harper, A. Van Rynbach, I. Agha, M. S. Mills Aug 2020

Artificial Neural Network Discovery Of A Switchable Metasurface Reflector, J. R. Thompson, J. A. Burrow, P. J. Shah, J. Slagle, E. S. Harper, A. Van Rynbach, I. Agha, M. S. Mills

Electro-Optics and Photonics Faculty Publications

Optical materials engineered to dynamically and selectively manipulate electromag- netic waves are essential to the future of modern optical systems. In this paper, we simulate various metasurface configurations consisting of periodic 1D bars or 2D pillars made of the ternary phase change material Ge2Sb2Te5 (GST). Dynamic switching behavior in reflectance is exploited due to a drastic refractive index change between the crystalline and amorphous states of GST. Selectivity in the reflection and transmission spectra is manipulated by tailoring the geometrical parameters of the metasurface. Due to the immense number of possible metasurface configurations, we train deep neural networks capable of …


A Hybrid Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Sarah K. Lami, J. Todd Hastings Aug 2020

A Hybrid Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Sarah K. Lami, J. Todd Hastings

Electrical and Computer Engineering Faculty Publications

Metalenses, ultra-thin optical elements that focus light using subwavelength structures, have been the subject of a number of recent investigations. Compared to their refractive counterparts, metalenses offer reduced size and weight, and new functionality such as polarization control. However, metalenses that correct chromatic aberration also suffer from markedly reduced focusing efficiency. Here we introduce a Hybrid Achromatic Metalens (HAML) that overcomes this trade-off and offers improved focusing efficiency over a broad wavelength range from 1000-1800 nm. HAMLs can be designed by combining recursive ray-tracing and simulated phase libraries rather than computationally intensive global search algorithms. Moreover, HAMLs can be fabricated …


Designing A Reactor Chamber For Hot Electron Chemistry On Bimetallic Plasmonic Nanoparticles, Bryn Merrill, Bingjie Zhang, Jerry Larue Aug 2020

Designing A Reactor Chamber For Hot Electron Chemistry On Bimetallic Plasmonic Nanoparticles, Bryn Merrill, Bingjie Zhang, Jerry Larue

SURF Posters and Papers

Catalysis provides pathways for efficient and selective chemical reactions by lowering the energy barriers for desired products. Gold nanoparticles (AuNPs) show excellent promise as plasmonic catalysts. Plasmonic materials have localized surface plasmon resonances, oscillations of the electron bath at the surface of a nanoparticle, that generate energetically intense electric fields which rapidly decay into energetically excited electrons. The excited electrons have the potential to destabilize atoms strongly bound to the catalysts through occupation of antibonding orbitals. Tuning the antibonding orbitals to make them accessible for occupancy by electrons is achieved by coating the AuNP in a thin layer of another …


Free Charge Carrier Properties In Two-Dimensional Materials And Monoclinic Oxides Studied By Optical Hall Effect, Sean Knight Aug 2020

Free Charge Carrier Properties In Two-Dimensional Materials And Monoclinic Oxides Studied By Optical Hall Effect, Sean Knight

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this dissertation, optical Hall effect (OHE) measurements are used to determine the free charge carrier properties of important two-dimensional materials and monoclinic oxides. Two-dimensional material systems have proven useful in high-frequency electronic devices due to their unique properties, such as high mobility, which arise from their two-dimensional nature. Monoclinic oxides exhibit many desirable characteristics, for example low-crystal symmetry which could lead to anisotropic carrier properties. Here, single-crystal monoclinic gallium oxide, an AlInN/GaN-based high-electron-mobility transistor (HEMT) structure, and epitaxial graphene are studied as examples. To characterize these material systems, the OHE measurement technique is employed. The OHE is a physical …


Improved Antimicrobial Properties Of Silver Nanoparticles With Methylene Blue, Ermek Belekov Jul 2020

Improved Antimicrobial Properties Of Silver Nanoparticles With Methylene Blue, Ermek Belekov

Masters Theses & Specialist Projects

Photosensitizing agents are the cornerstone of photodynamic therapy (PDT) that play essential role in deactivation process of multidrug resistant pathogens and tumor treatments. In this work we studied a photosensitizing agent made from mixture of silver nanoparticles (Ag NPs) and methylene blue (MB) which possess improved important characteristics like high photostability and high singlet oxygen yield. Ag NPs were synthesized by pulsed laser ablation technique in different aqueous solutions like Polyvinylpyrrolidone (PVP), citrate and Deionized (DI) water. The synthesized Ag NPs were characterized in depth using with transmission electron microscopy (TEM), UVVisible (UV-Vis), and photoluminescence (PL) spectra. Ag NPs were …


Implications Of Four-Dimensional Weather Cubes For Improved Cloud-Free Line-Of-Sight Assessments Of Free-Space Optical Communications Link Performance, Steven T. Fiorino, Santasri Bose-Pillai, Jaclyn Schmidt, Brannon Elmore, Kevin J. Keefer Jul 2020

Implications Of Four-Dimensional Weather Cubes For Improved Cloud-Free Line-Of-Sight Assessments Of Free-Space Optical Communications Link Performance, Steven T. Fiorino, Santasri Bose-Pillai, Jaclyn Schmidt, Brannon Elmore, Kevin J. Keefer

Faculty Publications

We advance the benefits of previously reported four-dimensional (4-D) weather cubes toward the creation of high-fidelity cloud-free line-of-sight (CFLOS) beam propagation for realistic assessment of autotracked/dynamically routed free-space optical (FSO) communication datalink concepts. The weather cubes accrue parameterization of optical effects and custom atmospheric resolution through implementation of numerical weather prediction data in the Laser Environmental Effects Definition and Reference atmospheric characterization and radiative transfer code. 4-D weather cube analyses have recently been expanded to accurately assess system performance (probabilistic climatologies and performance forecasts) at any wavelength/frequency or spectral band in the absence of field tests and employment data. The …


Measurements Of Optical Turbulence Over 149-Km Path, Jack E. Mccrae, Santasri Bose-Pillai, Steven T. Fiorino, Aaron J. Archibald, Joel Meoak, Brannon Elmore, Thomas Kesler, Christopher A. Rice Jul 2020

Measurements Of Optical Turbulence Over 149-Km Path, Jack E. Mccrae, Santasri Bose-Pillai, Steven T. Fiorino, Aaron J. Archibald, Joel Meoak, Brannon Elmore, Thomas Kesler, Christopher A. Rice

Faculty Publications

An experiment was conducted to study turbulence along a 149-km path between the Mauna Loa and Haleakala mountain tops using digital cameras and light-emitting diode (LED) beacons. Much of the path is over the ocean, and a large portion of the path is 3 km above sea level. On the Mauna Loa side, six LED beacons were placed in a roughly linear array with pair spacings from 7 to 62 m. From the Haleakala side, a pair of cameras separated by 83.8 cm observed these beacons. Turbulence along the path induces tilts on the wavefronts, which results in displacements of …


Turbulence Profiling Using Pupil Plane Wavefront Data Derived Fried Parameter Values For A Dynamically Ranged Rayleigh Beacon, Steven M. Zuraski, Elizabeth Beecher, Jack E. Mccrae, Steven T. Fiorino Jul 2020

Turbulence Profiling Using Pupil Plane Wavefront Data Derived Fried Parameter Values For A Dynamically Ranged Rayleigh Beacon, Steven M. Zuraski, Elizabeth Beecher, Jack E. Mccrae, Steven T. Fiorino

Faculty Publications

Long-range optical imaging applications are typically hindered by atmospheric turbulence. The effect of turbulence on an imaging system can manifest itself as an image blur effect usually quantified by the phase distortions present in the system. The blurring effect can be understood on the basis of the measured strength of atmospheric optical turbulence along the propagation path and its impacts on phase perturbation statistics within the imaging system. One method for obtaining these measurements is by the use of a dynamically ranged Rayleigh beacon system that exploits strategically varied beacon ranges along the propagation path, effectively obtaining estimates of the …


Wave-Optics Investigation Of Turbulence Thermal Blooming Interaction: I. Using Steady-State Simulations, Mark F. Spencer Jul 2020

Wave-Optics Investigation Of Turbulence Thermal Blooming Interaction: I. Using Steady-State Simulations, Mark F. Spencer

Faculty Publications

Part I of this two-part paper uses wave-optics simulations to look at the Monte Carlo averages associated with turbulence and steady-state thermal blooming (SSTB). The goal is to investigate turbulence thermal blooming interaction (TTBI). At wavelengths near 1 μm, TTBI increases the amount of constructive and destructive interference (i.e., scintillation) that results from high-power laser beam propagation through distributed-volume atmospheric aberrations. As a result, we use the spherical-wave Rytov number and the distortion number to gauge the strength of the simulated turbulence and SSTB. These parameters simplify greatly given propagation paths with constant atmospheric conditions. In addition, we use the …


Wave-Optics Investigation Of Turbulence Thermal Blooming Interaction: Ii. Using Time-Dependent Simulations, Mark F. Spencer Jul 2020

Wave-Optics Investigation Of Turbulence Thermal Blooming Interaction: Ii. Using Time-Dependent Simulations, Mark F. Spencer

Faculty Publications

Part II of this two-part paper uses wave-optics simulations to look at the Monte Carlo averages associated with turbulence and time-dependent thermal blooming (TDTB). The goal is to investigate turbulence thermal blooming interaction (TTBI). At wavelengths near 1 μm, TTBI increases the amount of constructive and destructive interference (i.e., scintillation) that results from high-power laser beam propagation through distributed-volume atmospheric aberrations. As a result, we use the spherical-wave Rytov number, the number of wind-clearing periods, and the distortion number to gauge the strength of the simulated turbulence and TDTB. These parameters simply greatly given propagation paths with constant atmospheric conditions. …


Fourier Propagation Tool For Aberration Analysis And A Point Spread Function Calculation Of Systems With Curved Focal Planes, Stephen C. Cain Jun 2020

Fourier Propagation Tool For Aberration Analysis And A Point Spread Function Calculation Of Systems With Curved Focal Planes, Stephen C. Cain

Faculty Publications

This paper describes a new Fourier propagator for computing the impulse response of an optical system with a curved focal plane array, while including terms ignored in Fresnel and Fraunhofer calculations. The propagator includes a Rayleigh-Sommerfeld diffraction formula calculation from a distant point through the optical system to its image point predicted by geometric optics on a spherical surface. The propagator then approximates the neighboring field points via the traditional binomial approximation of the Taylor series expansion around that field point. This technique results in a propagator that combines the speed of a Fourier transform operation with the accuracy of …


Statistical Photo-Calibration Of Photo-Detectors For Radiometry Without Calibrated Light Sources Comprising An Arithmetic Unit To Determine A Gain And A Bias From Mean Values And Variance Values, Adrian M. Catarius, Nicholas Yielding, Stephen C. Cain, Michael D. Seal Jun 2020

Statistical Photo-Calibration Of Photo-Detectors For Radiometry Without Calibrated Light Sources Comprising An Arithmetic Unit To Determine A Gain And A Bias From Mean Values And Variance Values, Adrian M. Catarius, Nicholas Yielding, Stephen C. Cain, Michael D. Seal

AFIT Patents

Calibration of a radiometry system uses a readout circuit of a photo-detector to provide first and second measurements collected over first and second integration times, respectively, where the first and second measurements are related to a photonic input to the photo-detector by a gain and a bias. First mean and variance values are computed for a plurality of first measurements. Second mean and variance values are computed for a plurality of second measurements. The gain and bias are determined from the first and second mean values and the first and second variance values without the use of a calibrated source. …


Automating 35mm Photographic Film Digitization: X-Y Table Capture System Design And Assessment, Michael J. Bennett May 2020

Automating 35mm Photographic Film Digitization: X-Y Table Capture System Design And Assessment, Michael J. Bennett

Published Works

35mm still image formats are some of the most abundant photographic film types in cultural heritage collections. However, their special handling needs coupled with high resolution digital capture requirements have traditionally posed logistical constraints with regard to the formats’ digitization at scale. Through the use of a programmable X-Y table camera capture system, both slide and strip 35mm photographic film can be digitized in an automated fashion following Federal Agencies Digitization Guidelines (FADGI).


Optically Pumped Spin Polarization As A Probe Of Many-Body Thermalization, Daniela Pagliero, Pablo R. Zangara, Jacob Henshaw, Ashok Ajoy, Rodolfo H. Acosta, Jeffrey A. Reimer, Alexander Pines, Carlos A. Meriles May 2020

Optically Pumped Spin Polarization As A Probe Of Many-Body Thermalization, Daniela Pagliero, Pablo R. Zangara, Jacob Henshaw, Ashok Ajoy, Rodolfo H. Acosta, Jeffrey A. Reimer, Alexander Pines, Carlos A. Meriles

Publications and Research

Disorder and many body interactions are known to impact transport and thermalization in competing ways, with the dominance of one or the other giving rise to fundamentally different dynamical phases. Here we investigate the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers. We focus on low-abundance, strongly hyperfine-coupled nuclei, whose role in the polarization transport we expose through the integrated impact of variable radio-frequency excitation on the observable bulk 13C magnetic resonance signal. Unexpectedly, we find good thermal contact throughout the nuclear spin bath, …


Integrated Photonic Device, Brittney Kuhn May 2020

Integrated Photonic Device, Brittney Kuhn

Student Scholar Symposium Abstracts and Posters

In computer mediated communication networks, information is typically encoded optically to transmit signals over long distances. At a network node, the optical signal is transformed into the electrical domain, processed electronically, and transformed back to an optical state to reach its destination. Transitioning between optical and electrical encoding of the signal is a potential security weak point, especially for quantum communication links. If information can remain in one state as it travels through the network, then security breaches can be detected and dealt with more easily. Furthermore, keeping the information in one state can reduce power consumption in the network. …


Ensemble Malware Classification System Using Deep Neural Networks, Barath Narayanan Narayanan, Venkata Salini Priyamvada Davuluru Apr 2020

Ensemble Malware Classification System Using Deep Neural Networks, Barath Narayanan Narayanan, Venkata Salini Priyamvada Davuluru

Electrical and Computer Engineering Faculty Publications

With the advancement of technology, there is a growing need of classifying malware programs that could potentially harm any computer system and/or smaller devices. In this research, an ensemble classification system comprising convolutional and recurrent neural networks is proposed to distinguish malware programs. Microsoft's Malware Classification Challenge (BIG 2015) dataset with nine distinct classes is utilized for this study. This dataset contains an assembly file and a compiled file for each malware program. Compiled files are visualized as images and are classified using Convolutional Neural Networks (CNNs). Assembly files consist of machine language opcodes that are distinguished among classes using …


Monitoring And Identifying The Rhodamine 6g-Hydroxide Ion Reaction Using In-Situ, Surface-Enhanced Raman Spectroscopy, Ryan Lamb Apr 2020

Monitoring And Identifying The Rhodamine 6g-Hydroxide Ion Reaction Using In-Situ, Surface-Enhanced Raman Spectroscopy, Ryan Lamb

Masters Theses & Specialist Projects

An effective method for monitoring chemical reactions is necessary to better understand their mechanisms and kinetics. Effective reaction monitoring requires a spectroscopy technique with fast data acquisition, high sensitivity, structure-to-spectrum correlation, and low solvent interference. Surface-enhanced Raman spectroscopy (SERS) provides these features, which makes it a valuable tool for monitoring reactions. To obtain the Raman enhancement, metallic nanostructures typically made of silver or gold are aggregated using a salt. The nanoparticles aggregates must then be stabilized using a surfactant to use this method in situ due to eventual nanoparticle precipitation. In this study, gold nanoparticles stabilized with sodium dodecyl sulfate …


Single-Pulse, Kerr-Effect Mueller Matrix Lidar Polarimeter, Keyser, Christian K., Richard K. Martin, Helena Lopez-Aviles, Khanh Nguyen, Arielle M. Adams, Demetrios Christodoulides Apr 2020

Single-Pulse, Kerr-Effect Mueller Matrix Lidar Polarimeter, Keyser, Christian K., Richard K. Martin, Helena Lopez-Aviles, Khanh Nguyen, Arielle M. Adams, Demetrios Christodoulides

Faculty Publications

We present a novel light detection and ranging (LiDAR) polarimeter that enables measurement of 12 of 16 sample Mueller matrix elements in a single, 10 ns pulse. The new polarization state generator (PSG) leverages Kerr phase modulation in a birefringent optical fiber, creating a probe pulse characterized by temporally varying polarization. Theoretical expressions for the Polarization State Generator (PSG) Stokes vector are derived for birefringent walk-off and no walk-off and incorporated into a time-dependent polarimeter signal model employing multiple polarization state analyzers (PSA). Polarimeter modeling compares the Kerr effect and electro-optic phase modulator–based PSG using a single Polarization State Analyzer …


Syllabus Ee330 Electromagnetics, Nicholas Madamopoulos Mar 2020

Syllabus Ee330 Electromagnetics, Nicholas Madamopoulos

Open Educational Resources

Concepts covered in the undergraduate electrical engineering class of electromagnetics