Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Optimal Atmospheric Compensation For Anisoplanatism In Adaptive-Optical Systems, Matthew R. Whiteley Sep 1998

Optimal Atmospheric Compensation For Anisoplanatism In Adaptive-Optical Systems, Matthew R. Whiteley

Theses and Dissertations

Anisoplanatism in adaptive optics (AO) systems is a performance-degrading effect that arises whenever light from the wave-front sensor beacon and light from the object of interest sample different volumes of optical turbulence. This effect occurs if there is either a spatial separation between the object and the beacon, or a spatial separation between the wave-front sensor and phase-compensation aperture, or if both types of separation are present in the AO system. Anisoplanatism results in an increased value of the aperture-averaged residual phase variance after AO compensation, which causes an exponential decrease in system performance. This dissertation offers a theoretical framework …


Regression Analysis Of Radar Measured Optical Turbulence With Synoptic Scale Meteorological Variables, Diana L. Hajek Mar 1998

Regression Analysis Of Radar Measured Optical Turbulence With Synoptic Scale Meteorological Variables, Diana L. Hajek

Theses and Dissertations

A key issue to the USAF's Airborne Laser (ABL) program is the ability to accurately predict the level of optical turbulence that the ABL will encounter at its flight levels. The optical turbulence must be characterized so that the range and range variation of the ABL can be determined. Gravity wave spectra resulting from frontal or jet stream passage are presumed to cause layers of optical turbulence; however, exact relationships between optical turbulence and synoptic scale meteorological phenomena are unclear. This study assesses the statistical relationship between optical turbulence and synoptic scale variables through multiple linear regression. The optical turbulence …


Linear Reconstruction Of Non-Stationary Image Ensembles Incorporating Blur And Noise Models, Stephen D. Ford Mar 1998

Linear Reconstruction Of Non-Stationary Image Ensembles Incorporating Blur And Noise Models, Stephen D. Ford

Theses and Dissertations

Two new linear reconstruction techniques are developed to improve the resolution of images collected by ground-based telescopes imaging through atmospheric turbulence. The classical approach involves the application of constrained least squares (CLS) to the deconvolution from wavefront sensing (DWFS) technique. The new algorithm incorporates blur and noise models to select the appropriate regularization constant automatically. In all cases examined, the Newton-Raphson minimization converged to a solution in less than 10 iterations. The non-iterative Bayesian approach involves the development of a new vector Wiener filter which is optimal with respect to mean square error (MSE) for a non-stationary object class degraded …