Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Modeling And Simulation Of Optical Characteristics Of Microelectromechanical Mirror Arrays, Peter C. Roberts Dec 1996

Modeling And Simulation Of Optical Characteristics Of Microelectromechanical Mirror Arrays, Peter C. Roberts

Theses and Dissertations

MEMS (Micro-Electro-Mechanical Systems) micromirror devices can be used to control the phase of a propagating light wavefront, and in particular to correct aberrations that may be present in the wavefront, due to either atmospheric turbulence or any other type of fixed or time and space varying aberrations. In order to shorten the design cycle of MEMS micromirror devices, computer software is developed to create, from MEMS micromirror device design data, a numerical model of the MEMS device. The model is then used to compute the far field diffraction pattern of a wavefront reflected from the device, and to predict the …


Demonstrating Optical Aberration Correction With A Mems Micro-Mirror Device, Shaun R. Hick Dec 1996

Demonstrating Optical Aberration Correction With A Mems Micro-Mirror Device, Shaun R. Hick

Theses and Dissertations

This research conducted the first demonstrated use of a micro-electro-mechanical structure (MEMS) mirror array to correct a static optical aberration. A well-developed technique in adaptive optics imaging systems uses a deformable mirror to reflect the incident wave front to the imaging stage of the system. By matching the surface of the deformable mirror to the shape of the wave front phase distortion, the reflected wave front will be less aberrated before it is imaged. Typical adaptive optics systems use piezo-electric actuated deformable mirrors. This research used an electrostatically actuated, segmented mirror array, constructed by standard MEMS fabrication techniques, to investigate …


Deconvolution From Wavefront Sensing Using Optimal Wavefront Estimators, Scott R. Maethner Dec 1996

Deconvolution From Wavefront Sensing Using Optimal Wavefront Estimators, Scott R. Maethner

Theses and Dissertations

A cost effective method to improve the space surveillance mission performance of United States Air Force (USAF) ground-based telescopes is investigated and improved. A minimum variance wavefront estimation technique is used to improve Deconvolution from Wavefront Sensing (DWFS), a method to mitigate the effects of atmospheric turbulence on imaging systems that does not require expensive adaptive optics. Both least-squares and minimum variance wavefront phase estimation techniques are investigated, using both Gaussian and Zernike polynomial elementary functions. Imaging simulations and established performance metrics are used to evaluate these wavefront estimation techniques for a one-meter optical telescope. Performance metrics include the average …


Estimation Of Satellite Orientation From Space Surveillance Imagery Measured With An Adaptive Optics Telescope, Gregory E. Wood Dec 1996

Estimation Of Satellite Orientation From Space Surveillance Imagery Measured With An Adaptive Optics Telescope, Gregory E. Wood

Theses and Dissertations

The use of the matched filter to automatically estimate the pose of a Low Earth Orbiting satellite from imagery taken with an adaptive optics telescope is explored. This work represents the first effort to solve the satellite pose estimation problem while considering the broad range of atmospheric turbulence levels and target visual magnitudes that are encountered in ground based space surveillance operations. Several Algorithms are examined in an effort to determine the performance bounds on the matched filter for this application. Results are given over an extremely wide range of seeing conditions. These results are weighted based on historical data …


Design Of Gradient Index Optical Thin Films, Jeffrey J. Druessel Jun 1996

Design Of Gradient Index Optical Thin Films, Jeffrey J. Druessel

Theses and Dissertations

Gradient index thin films provide greater flexibility for the design of optical coatings than the more conventional 'layer' films. In addition, gradient index films have higher damage thresholds and better adhesion properties. This dissertation presents an enhancement to the existing inverse Fourier transform gradient index design method, and develops a new optimal design method for gradient index films using a generalized Fourier series approach. The inverse Fourier transform method is modified to include use of the phase of the index profile as a variable in rugate filter design. Use of an optimal phase function in Fourier-based filter designs reduces the …


Characterization Of Spatial And Temporal Anisotropy In Turbulent Mixing Layers Using Optical Techniques, Patrick J. Gardner May 1996

Characterization Of Spatial And Temporal Anisotropy In Turbulent Mixing Layers Using Optical Techniques, Patrick J. Gardner

Theses and Dissertations

The optical aberrations induced by mixing layers of dissimilar gases are recorded and analyzed in order to characterize the spatial and temporal properties of the flow. Laser light was propagated through a mixing layer of Helium and Nitrogen gas, having velocities of 8.5 m/sec and 1.5 m/sec, respectively. The light was propagated in a direction perpendicular to the plane of the mixing layer. The mixing layer was evaluated in two experimental regimes: free turbulent mixing, where the mixing layer spreads into the surrounding air; and channel flow, where the mixing layer is confined to a rectangular channel. The optical perturbations …


Linear And Non-Linear Preprocessing Of Wavefront Sensor Slope Measurements For Improved Adaptive Optics Performance, Dennis A. Montera Mar 1996

Linear And Non-Linear Preprocessing Of Wavefront Sensor Slope Measurements For Improved Adaptive Optics Performance, Dennis A. Montera

Theses and Dissertations

New methods for preprocessing wavefront sensor (WFS) slope measurements are presented. Methods are developed to improve the accuracy of WFS slope measurements, as well as estimating key atmospheric and system parameters from the slope signals. Both statistical and artificial neural network solutions are investigated. Also, new atmospheric models for generating slope and phase data with the proper spatial and temporal statistics are developed. The experiments in improving the accuracy of WFS slope measurements include reducing the WFS slope measurement error and compensating for adaptive optics system time delay through temporal slope prediction. The experiments in key parameter estimation include estimating …