Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Nonlinear Photoacoustics For Measuring The Nonlinear Optical Absorption Coefficient, Chandra S. Yelleswarapu, Sri-Rajasekhar Kothapalli Apr 2010

Nonlinear Photoacoustics For Measuring The Nonlinear Optical Absorption Coefficient, Chandra S. Yelleswarapu, Sri-Rajasekhar Kothapalli

Physics Faculty Publications

We report a novel photoacoustic Z-scan (PAZ-scan) technique that combines the advantages offered by the conventional Z-scan method and the sensitivity of the photoacoustic detection. The sample is scanned through the focused laser beam and the generated photoacoustic signal is recorded using a 10 MHz focused ultrasound transducer. Since the signal strength is directly proportional to the optical absorption, PAZ-scan displays nonlinear behavior depicting the nonlinear optical absorption of the material. Among many advantages, our experiments on mouse blood show that PAZ-scan can potentially be used as a standard technique to calibrate contrast agents used in theranostics in general and …


Demonstration Of A Neutral Atom Controlled-Not Quantum Gate, L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, Todd A. Johnson, T. G. Walker, M. Saffman Jan 2010

Demonstration Of A Neutral Atom Controlled-Not Quantum Gate, L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, Todd A. Johnson, T. G. Walker, M. Saffman

Physics Faculty Publications

We present the first demonstration of a CNOT gate between two individually addressed neutral atoms. Our implementation of the CNOT uses Rydberg blockade interactions between neutral atoms held in optical traps separated by >8  μm. Using two different gate protocols we measure CNOT fidelities of F=0.73 and 0.72 based on truth table probabilities. The gate was used to generate Bell states with fidelity F=0.48±0.06. After correcting for atom loss we obtain an a posteriori entanglement fidelity of F=0.58.