Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Midlatitude Mesospheric Temperature Anomalies During Major Ssw Events As Observed With Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron Jun 2014

Midlatitude Mesospheric Temperature Anomalies During Major Ssw Events As Observed With Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron

Graduate Student Posters

While the mesospheric temperature anomalies associated with Sudden Stratospheric Warmings (SSWs) have been observed extensively in the polar regions, observations of these anomalies at midlatitudes are sparse. The original Rayleigh-scatter lidar that operated at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W) in the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU) collected a very dense set of temperature data for 11 years, from 1993 through 2004. The temperatures derived from these data extended over the mesosphere, from 45 to 90 km. This work focuses on the extensive Rayleigh lidar observations made during seven …


Temperatures In The Mid-Latitude Mesosphere During Sudden Stratospheric Warmings As Determined From Rayleigh Lidar Data, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron Dec 2013

Temperatures In The Mid-Latitude Mesosphere During Sudden Stratospheric Warmings As Determined From Rayleigh Lidar Data, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron

Graduate Student Posters

Sudden Stratospheric Warmings (SSWs) are major disturbances in the polar region of the winter hemisphere that cause major changes in stratospheric temperature and circulation. SSWs are characterized by a temperature increase of tens of degrees Kelvin, averaged over 60°-90° latitude, and a weakening of the polar vortex that persists for the order of a week at the 10 hPa level (roughly 32 km) [Labitzke and Naujokat, 2000]. The polar vortices are cyclones centered on both of the Earth’s poles that are present from the mid-troposphere to the lower stratosphere. Eastward zonal winds define the strong polar vortices in the winter. …


Ground-Based Observations With A Rayleigh-Mie-Raman Lidar From 15-120 Km, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, David L. Barton, Matthew T. Emerick Oct 2013

Ground-Based Observations With A Rayleigh-Mie-Raman Lidar From 15-120 Km, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, David L. Barton, Matthew T. Emerick

Graduate Student Posters

Rayleigh lidar systems have historically made ground-based observations of the upper atmosphere (stratosphere and mesosphere) from 35-90 km. This technology has helped fill the data collection gap between the troposphere and space. Recently our Rayleigh lidar group at the Atmospheric Lidar Observatory on the campus of Utah State University (42° N, 112° W) upgraded the original lidar system in order to extend the measurement range for neutral densities and temperatures to higher altitudes and has increased the upper limit, so far, from 90 to 110 km. Next, we will extend the lower altitude limit downward to 15 km. This will …


Upgraded Alo Rayleigh Lidar System And Its Improved Gravity Wave Measurements, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham Jun 2012

Upgraded Alo Rayleigh Lidar System And Its Improved Gravity Wave Measurements, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham

Graduate Student Posters

The Rayleigh-Scatter lidar system at the Atmospheric Lidar Observatory (ALO) on the Utah State campus is currently going through a series of upgrades to significantly improve its observational abilities. A specific objective of these upgrades is to expand the altitude range over which backscattered photons can be collected. A second objective is to increase the sensitivity of the instrument to be able to analyze the raw data at finer temporal and/or spatial resolutions. By measuring relative densities, the system will be able to produce absolute temperatures and relative density perturbations, which illustrate gravity wave structures. Gravity wave studies will significantly …


Observations With The Most Sensitive Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham Apr 2012

Observations With The Most Sensitive Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham

Graduate Student Posters

The mesosphere is the most unexplored region of the atmosphere. Its altitude range of 50-85 km lies in between the reaches of data collecting instruments like weather balloons and satellites. For this reason, remote sensing systems, such as lidar, which are able to employ ground-based instruments to make extensive measurements in this difficult to detect region. The Rayleigh-scatter lidar at USU is currently being redeveloped to be the most powerful and sensitive of its kind. This type of lidar exploits light and particle interactions, like those that account for the blue color of the sky, to make relative density and …


Characterization Of Pollen Particles Using Lidar, Leda Sox Oct 2010

Characterization Of Pollen Particles Using Lidar, Leda Sox

Graduate Student Posters

We have observed pollen in the local troposphere using the depolarization capabilities of a LIDAR (Light Detection and Ranging) system. The polarization characteristics of the received LIDAR signal, along with supplemental pollen forecast data, allowed me to characterize the shape of the pollen particles.