Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physics

Cross-Layer Design Of Highly Scalable And Energy-Efficient Ai Accelerator Systems Using Photonic Integrated Circuits, Sairam Sri Vatsavai Jan 2024

Cross-Layer Design Of Highly Scalable And Energy-Efficient Ai Accelerator Systems Using Photonic Integrated Circuits, Sairam Sri Vatsavai

Theses and Dissertations--Electrical and Computer Engineering

Artificial Intelligence (AI) has experienced remarkable success in recent years, solving complex computational problems across various domains, including computer vision, natural language processing, and pattern recognition. Much of this success can be attributed to the advancements in deep learning algorithms and models, particularly Artificial Neural Networks (ANNs). In recent times, deep ANNs have achieved unprecedented levels of accuracy, surpassing human capabilities in some cases. However, these deep ANN models come at a significant computational cost, with billions to trillions of parameters. Recent trends indicate that the number of parameters per ANN model will continue to grow exponentially in the foreseeable …


Optical Metasurfaces, Fatih Balli Jan 2021

Optical Metasurfaces, Fatih Balli

Theses and Dissertations--Physics and Astronomy

Traditional optical elements, such as refractive lenses, mirrors, phase plates and polarizers have been used for various purposes such as imaging systems, lithographic printing, astronomical observations and display technology. Despite their long-term achievements, they can be bulky and not suitable for miniaturization. On the other hand, recent nanotechnology advances allowed us to manufacture micro and nanoscale devices with ultra-compact sizes. Metasurfaces, 2D engineered artificial interfaces, have emerged as candidates to replace traditional refractive lenses with ultra-thin miniaturized optical elements. They possess sub-wavelength unit cell structures with a specific geometry and material selection. Each unit cell can uniquely tailor the phase, …


Study Of Cell Charging Effects For The Neutron Electric Dipole Moment Experiment At Oak Ridge National Laboratory, Mark Broering Jan 2020

Study Of Cell Charging Effects For The Neutron Electric Dipole Moment Experiment At Oak Ridge National Laboratory, Mark Broering

Theses and Dissertations--Physics and Astronomy

The neutron electric dipole moment (nEDM) collaboration at the Spallation Neutron Source plans to use ultra-cold neutrons in superfluid helium to improve the nEDM limit by about two orders of magnitude. In this apparatus, neutrons are stored in poly(methyl methacrylate), PMMA, cells located in a strong, stable electric field. This electric field is produced by high voltage electrodes located outside of the neutron cells. Several sources generate charged particles inside the neutron cells. The electric field pulls these charges farther apart, attracting each to the oppositely charged electrode. As the charges build up on the cells walls, they create an …


Magneto-Optical Properties Of Thin Permalloy Films: A Study Of The Magneto-Optical Generation Of Light Carrying Angular Momentum, Patrick D. Montgomery Jan 2018

Magneto-Optical Properties Of Thin Permalloy Films: A Study Of The Magneto-Optical Generation Of Light Carrying Angular Momentum, Patrick D. Montgomery

Theses and Dissertations--Electrical and Computer Engineering

Magneto-optical materials such as permalloy can be used to create artificial spin- ice (ASI) lattices with antiferromagnetic ordering. Magneto-optical materials used to create diffraction lattices are known to exhibit magnetic scattering at the half- order Bragg peak while in the ground state. The significant drawbacks of studying the magneto-optical generation of OAM using x-rays are cost, time, and access to proper equipment. In this work, it is shown that the possibility of studying OAM and magneto-optical materials in the spectrum of visible light at or around 2 eV is viable. Using spectroscopic ellipsometry it is possible to detect a change …


Studies Of Magnetically Induced Faraday Rotation By Polarized Helium-3 Atoms, Joshua Abney Jan 2018

Studies Of Magnetically Induced Faraday Rotation By Polarized Helium-3 Atoms, Joshua Abney

Theses and Dissertations--Physics and Astronomy

Gyromagnetic Faraday rotation offers a new method to probe limits on properties of simple spin systems such as the possible magnetic moment of asymmetric dark matter or as a polarization monitor for polarized targets. Theoretical calculations predict the expected rotations of linearly polarized light due to the magnetization of spin-1/2 particles are close to or beyond the limit of what can currently be measured experimentally (10−9 rad). So far, this effect has not been verified. Nuclear spin polarized 3He provides an ideal test system due to its simple structure and ability to achieve high nuclear spin polarization via …


Magneto-Optical Effects And Precision Measurement Physics: Accessing The Magnetic Faraday Effect Of Polarized 3He With A Triple Modulation Technique, Gretchen Phelps Jan 2014

Magneto-Optical Effects And Precision Measurement Physics: Accessing The Magnetic Faraday Effect Of Polarized 3He With A Triple Modulation Technique, Gretchen Phelps

Theses and Dissertations--Physics and Astronomy

This work is comprised of the study of two magneto-optical phenomena: the Kerr effect and the Faraday effect. Neutron physics experiments often utilize polarized neutrons, and one method to generate or guide polarized neutrons involves the use of a system of magnetic super-mirrors. Experience shows that the magnetization of the super-mirror may decay with time; therefore, we implemented the surface magneto-optical Kerr effect (SMOKE) to study the temporal behavior of the magnetization of a magnetized remnant super-mirror sample, where a sensitivity of 0.1 mrad was obtained. Unique to our set-up was the method in which the various magnetization directions were …


Reference Compensation For Localized Surface-Plasmon Resonance Sensors, Neha Nehru Jan 2014

Reference Compensation For Localized Surface-Plasmon Resonance Sensors, Neha Nehru

Theses and Dissertations--Electrical and Computer Engineering

Noble metal nanoparticles supporting localized surface plasmon resonances (LSPR) have been extensively investigated for label free detection of various biological and chemical interactions. When compared to other optical sensing techniques, LSPR sensors offer label-free detection of biomolecular interactions in localized sensing volume solutions. However, these sensors also suffer from a major disadvantage – LSPR sensors remain highly susceptible to interference because they respond to both solution refractive index change and non-specific binding as well as specific binding of the target analyte. These interactions can severely compromise the measurement of the target analyte in a complex unknown media and hence limit …


Modification Of Plasmonic Nano Structures' Absorption And Scattering Under Evanescent Wave Illumination Above Optical Waveguides Or With The Presence Of Different Material Nano Scale Atomic Force Microscope Tips, Gazi Mostafa Huda Jan 2014

Modification Of Plasmonic Nano Structures' Absorption And Scattering Under Evanescent Wave Illumination Above Optical Waveguides Or With The Presence Of Different Material Nano Scale Atomic Force Microscope Tips, Gazi Mostafa Huda

Theses and Dissertations--Electrical and Computer Engineering

The interaction of an evanescent wave and plasmonic nanostructures are simulated in Finite Element Method. Specifically, the optical absorption cross section (Cabs) of a silver nanoparticle (AgNP) and a gold nanoparticle (AuNP) in the presence of metallic (gold) and dielectric (silicon) atomic force microscope (AFM) probes are numerically calculated in COMSOL. The system was illuminated by a transverse magnetic polarized, total internally reflected (TIR) waves or propagating surface plasmon (SP) wave. Both material nanoscale probes localize and enhance the field between the apex of the tip and the particle. Based on the absorption cross section equation the author …


Active Optimal Control Strategies For Increasing The Efficiency Of Photovoltaic Cells, Sharif Aljoaba Jan 2013

Active Optimal Control Strategies For Increasing The Efficiency Of Photovoltaic Cells, Sharif Aljoaba

Theses and Dissertations--Electrical and Computer Engineering

Energy consumption has increased drastically during the last century. Currently, the worldwide energy consumption is about 17.4 TW and is predicted to reach 25 TW by 2035. Solar energy has emerged as one of the potential renewable energy sources. Since its first physical recognition in 1887 by Adams and Day till nowadays, research in solar energy is continuously developing. This has lead to many achievements and milestones that introduced it as one of the most reliable and sustainable energy sources. Recently, the International Energy Agency declared that solar energy is predicted to be one of the major electricity production energy …


Near-Field Radiative Transfer: Thermal Radiation, Thermophotovoltaic Power Generation And Optical Characterization, Mathieu Francoeur Jan 2010

Near-Field Radiative Transfer: Thermal Radiation, Thermophotovoltaic Power Generation And Optical Characterization, Mathieu Francoeur

University of Kentucky Doctoral Dissertations

This dissertation focuses on near-field radiative transfer, which can be defined as the discipline concerned with energy transfer via electromagnetic waves at sub-wavelength distances. Three specific subjects related to this discipline are investigated, namely nearfield thermal radiation, nanoscale-gap thermophotovoltaic (nano-TPV) power generation and optical characterization. An algorithm for the solution of near-field thermal radiation problems in one-dimensional layered media is developed, and several tests are performed showing the accuracy, consistency and versatility of the procedure. The possibility of tuning near-field radiative heat transfer via thin films supporting surface phononpolaritons (SPhPs) in the infrared is afterwards investigated via the computation of …