Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

System Design For The Quantification Of Microbial Motility In Extreme Environments, Megan Marie Dubay Aug 2022

System Design For The Quantification Of Microbial Motility In Extreme Environments, Megan Marie Dubay

Dissertations and Theses

Motility of microorganisms is understudied but provides useful insights into their behavior. Organisms' ability to move autonomously changes how they interact with their environment--finding nutrients, interacting with other organisms, and avoiding unfavorable conditions. Understanding motility features can also be used to identify specific species, such as the identification of Vibrio cholerae in human samples. Motility might also be used as evidence of life existing in even the most extreme environments on Earth, and possibly beyond. Specialized microscopy systems can be required to examine the motility of microorganisms due to the nature of the environments to which the instruments are exposed. …


Observation And Control Of Photoemission And Electric Field Enhancement Of Plasmonic Antennas Through Photoemission Electron Microscopy, Christopher M. Scheffler Jun 2022

Observation And Control Of Photoemission And Electric Field Enhancement Of Plasmonic Antennas Through Photoemission Electron Microscopy, Christopher M. Scheffler

Dissertations and Theses

Photoemission electron microscopy (PEEM) is an imaging method which uses electrons excited through the photoelectric effect to characterize a sample surface with nanometer-level resolution. In PEEM, a high intensity laser excites electrons from the surface of the material and electron optics are used to form an image from the intensity and spatial distribution of the photoemission from the sample. The goal of this research was to study and maximize light confinement, which was accomplished using plasmonic nanostructures. Surface plasmons represent oscillations in the electron density of a material and can occur along the transition interface between a metal and a …